Title: | User-Friendly R Interface to Biologic Web Services' API |
---|---|
Description: | Currently fully supports Enrichr, JASPAR, miEAA, PANTHER, Reactome, STRING, and UniProt! The goal of rbioapi is to provide a user-friendly and consistent interface to biological databases and services. In a way that insulates the user from the technicalities of using web services API and creates a unified and easy-to-use interface to biological and medical web services. This is an ongoing project; New databases and services will be added periodically. Feel free to suggest any databases or services you often use. |
Authors: | Moosa Rezwani [aut, cre] |
Maintainer: | Moosa Rezwani <[email protected]> |
License: | GPL-3 |
Version: | 0.8.2 |
Built: | 2025-02-03 01:24:45 UTC |
Source: | https://github.com/moosa-r/rbioapi |
Run this function to test the internet connectivity of your device and the current status of the supported Services.
rba_connection_test(print_output = TRUE, diagnostics = FALSE)
rba_connection_test(print_output = TRUE, diagnostics = FALSE)
print_output |
(Logical) (default = TRUE) Send the tests' output to the console? |
diagnostics |
(Logical) (default = FALSE) Show diagnostics and detailed messages with internal information. |
This function attempts to send a simple query to the supported services.
If the service successfully responded, you will be informed with a success
message; If not, the content of the error will be reported to you.
Please run this function if you encounter any errors while using
rbioapi. Also, if you need to contact support, kindly call this function
with 'diagnostic = TRUE' and include the output messages in your support
request.
Connection test for the supported servers will be displayed in console and the results will be invisibly returned as a list.
Other "Helper functions":
rba_options()
,
rba_pages()
rba_connection_test()
rba_connection_test()
This function provides a convenient one-step wrapper for performing enrichment analysis on a given gene list using Enrichr. It simplifies the process by internally calling the necessary functions in the correct order. See the details section for more information.
rba_enrichr( gene_list, description = NULL, gene_set_library = "all", regex_library_name = TRUE, organism = "human", background_genes = NULL, progress_bar = TRUE, ... )
rba_enrichr( gene_list, description = NULL, gene_set_library = "all", regex_library_name = TRUE, organism = "human", background_genes = NULL, progress_bar = TRUE, ... )
gene_list |
A character vector with Entrez gene symbols of test genes. |
description |
(optional) A description to be associated with your uploaded gene-set to Enrichr servers. |
gene_set_library |
One of the:
|
regex_library_name |
logical: if TRUE (default) the supplied gene_set_library will be considered as a regex pattern. If FALSE, gene_set_library will be considered as an exact match. |
organism |
(default = "human") Which model organism version of Enrichr to use? Available options are: "human", (H. sapiens & M. musculus), "fly" (D. melanogaster), "yeast" (S. cerevisiae), "worm" (C. elegans) and "fish" (D. rerio). |
background_genes |
A character vector of Entrez gene symbols of the background genes. |
progress_bar |
logical: (default = TRUE) if multiple Enrichr libraries are selected, should a progress bar be displayed? |
... |
rbioapi option(s). See |
This function will call other rba_enrichr_*** functions with the following order:
(If necessary) Call rba_enrichr_libs
to obtain a list
of available libraries in Enrichr for the given organism.
Call rba_enrichr_add_list
to upload your gene-list
and obtain a 'user list ID'.
(If necessary) Call rba_enrichr_add_background
to
upload your background gene-list and obtain a 'background list ID'.
Call rba_enrichr_enrich
to perform enrichment analysis
on the gene-list against one or multiple Enrichr libraries
A list containing data frames of the enrichment results of your supplied gene-list against the selected Enrichr libraries.
"GET https://maayanlab.cloud/Enrichr/datasetStatistics"
"POST https://maayanlab.cloud/Enrichr/addList"
"POST https://maayanlab.cloud/speedrichr/api/addList"
"POST https://maayanlab.cloud/speedrichr/api/addbackground"
"GET https://maayanlab.cloud/Enrichr/enrich"
"POST https://maayanlab.cloud/speedrichr/api/backgroundenrich"
Chen, E.Y., Tan, C.M., Kou, Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. Bioinformatics 14, 128 (2013). https://doi.org/10.1186/1471-2105-14-128
Maxim V. Kuleshov, Matthew R. Jones, Andrew D. Rouillard, Nicolas F. Fernandez, Qiaonan Duan, Zichen Wang, Simon Koplev, Sherry L. Jenkins, Kathleen M. Jagodnik, Alexander Lachmann, Michael G. McDermott, Caroline D. Monteiro, Gregory W. Gundersen, Avi Ma’ayan, Enrichr: a comprehensive gene set enrichment analysis web server 2016 update, Nucleic Acids Research, Volume 44, Issue W1, 8 July 2016, Pages W90–W97, https://doi.org/10.1093/nar/gkw377
Xie, Z., Bailey, A., Kuleshov, M. V., Clarke, D. J. B., Evangelista, J. E., Jenkins, S. L., Lachmann, A., Wojciechowicz, M. L., Kropiwnicki, E., Jagodnik, K. M., Jeon, M., & Ma’ayan, A. (2021). Gene set knowledge discovery with Enrichr. Current Protocols, 1, e90. doi: 10.1002/cpz1.90
Other "Enrichr":
rba_enrichr_add_background()
,
rba_enrichr_add_list()
,
rba_enrichr_enrich()
,
rba_enrichr_gene_map()
,
rba_enrichr_libs()
,
rba_enrichr_view_list()
Other "Enrichment/Over-representation":
rba_mieaa_enrich()
,
rba_panther_enrich()
,
rba_reactome_analysis()
,
rba_string_enrichment()
,
rba_string_enrichment_image()
## Not run: rba_enrichr(gene_list = c("TP53", "TNF", "EGFR")) ## End(Not run) rba_enrichr(gene_list = c("TP53", "TNF", "EGFR"), gene_set_library = "GO_Molecular_Function_2017", regex_library_name = FALSE) rba_enrichr(gene_list = c("TP53", "TNF", "EGFR"), gene_set_library = "go", regex_library_name = TRUE)
## Not run: rba_enrichr(gene_list = c("TP53", "TNF", "EGFR")) ## End(Not run) rba_enrichr(gene_list = c("TP53", "TNF", "EGFR"), gene_set_library = "GO_Molecular_Function_2017", regex_library_name = FALSE) rba_enrichr(gene_list = c("TP53", "TNF", "EGFR"), gene_set_library = "go", regex_library_name = TRUE)
In addition to the main gene list, you can also submit a background gene list to Enrichr. This gene list can be used later to compute the statistics of the enrichment analysis.
rba_enrichr_add_background(background_genes, ...)
rba_enrichr_add_background(background_genes, ...)
background_genes |
A character vector of Entrez gene symbols of the background genes. |
... |
rbioapi option(s). See |
Please note that rba_enrichr
provides a one-step and
more convenient way to automatically handle this and other required
function calls needed to perform gene set enrichment analysis with Enrichr.
A list with the unique IDs for your uploaded background gene list.
"POST https://maayanlab.cloud/speedrichr/api/addbackground"
Chen, E.Y., Tan, C.M., Kou, Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. Bioinformatics 14, 128 (2013). https://doi.org/10.1186/1471-2105-14-128
Maxim V. Kuleshov, Matthew R. Jones, Andrew D. Rouillard, Nicolas F. Fernandez, Qiaonan Duan, Zichen Wang, Simon Koplev, Sherry L. Jenkins, Kathleen M. Jagodnik, Alexander Lachmann, Michael G. McDermott, Caroline D. Monteiro, Gregory W. Gundersen, Avi Ma’ayan, Enrichr: a comprehensive gene set enrichment analysis web server 2016 update, Nucleic Acids Research, Volume 44, Issue W1, 8 July 2016, Pages W90–W97, https://doi.org/10.1093/nar/gkw377
Xie, Z., Bailey, A., Kuleshov, M. V., Clarke, D. J. B., Evangelista, J. E., Jenkins, S. L., Lachmann, A., Wojciechowicz, M. L., Kropiwnicki, E., Jagodnik, K. M., Jeon, M., & Ma’ayan, A. (2021). Gene set knowledge discovery with Enrichr. Current Protocols, 1, e90. doi: 10.1002/cpz1.90
Other "Enrichr":
rba_enrichr()
,
rba_enrichr_add_list()
,
rba_enrichr_enrich()
,
rba_enrichr_gene_map()
,
rba_enrichr_libs()
,
rba_enrichr_view_list()
my_background_genes <- c( "NSUN3", "POLRMT", "NLRX1", "SFXN5", "ZC3H12C", "SLC25A39", "ARSG", "DEFB29", "PCMTD2", "ACAA1A", "LRRC1", "2810432D09RIK", "SEPHS2", "SAC3D1", "TMLHE", "LOC623451", "TSR2", "PLEKHA7", "GYS2", "ARHGEF12", "HIBCH", "LYRM2", "ZBTB44", "ENTPD5", "RAB11FIP2", "LIPT1", "INTU", "ANXA13", "KLF12", "SAT2", "GAL3ST2", "VAMP8", "FKBPL", "AQP11", "TRAP1", "PMPCB", "TM7SF3", "RBM39", "BRI3", "KDR", "ZFP748", "NAP1L1", "DHRS1", "LRRC56", "WDR20A", "STXBP2", "KLF1", "UFC1", "CCDC16", "9230114K14RIK", "RWDD3", "2610528K11RIK") rba_enrichr_add_background(background_genes = my_background_genes)
my_background_genes <- c( "NSUN3", "POLRMT", "NLRX1", "SFXN5", "ZC3H12C", "SLC25A39", "ARSG", "DEFB29", "PCMTD2", "ACAA1A", "LRRC1", "2810432D09RIK", "SEPHS2", "SAC3D1", "TMLHE", "LOC623451", "TSR2", "PLEKHA7", "GYS2", "ARHGEF12", "HIBCH", "LYRM2", "ZBTB44", "ENTPD5", "RAB11FIP2", "LIPT1", "INTU", "ANXA13", "KLF12", "SAT2", "GAL3ST2", "VAMP8", "FKBPL", "AQP11", "TRAP1", "PMPCB", "TM7SF3", "RBM39", "BRI3", "KDR", "ZFP748", "NAP1L1", "DHRS1", "LRRC56", "WDR20A", "STXBP2", "KLF1", "UFC1", "CCDC16", "9230114K14RIK", "RWDD3", "2610528K11RIK") rba_enrichr_add_background(background_genes = my_background_genes)
This function uploads your gene list to Enrichr and retrieves a unique 'user list ID' required for performing enrichment analysis.
rba_enrichr_add_list( gene_list, description = NULL, organism = "human", speedrichr = FALSE, ... )
rba_enrichr_add_list( gene_list, description = NULL, organism = "human", speedrichr = FALSE, ... )
gene_list |
A character vector with Entrez gene symbols of test genes. |
description |
(optional) A description to be associated with your uploaded gene-set to Enrichr servers. |
organism |
(default = "human") Which model organism version of Enrichr to use? Available options are: "human", (H. sapiens & M. musculus), "fly" (D. melanogaster), "yeast" (S. cerevisiae), "worm" (C. elegans) and "fish" (D. rerio). |
speedrichr |
logical (default = FALSE) Set to TRUE if you will use this gene list with a background list; otherwise, set to FALSE. Only available for human libraries. Refer to the details section for more information. |
... |
rbioapi option(s). See |
Enrichr uses separate APIs for analysis with or without a background gene list. Set 'speedrichr = TRUE' if this gene list will be used with a background gene list; otherwise, set it to FALSE. Gene lists submitted with 'speedrichr = TRUE' can only be analyzed with a background set, and those submitted with 'speedrichr = FALSE' can only be analyzed without one. Currently, background-based enrichment is supported only for human libraries.
Please note that rba_enrichr
provides a one-step and
more convenient way to automatically handle this and other required
function calls needed to perform gene set enrichment analysis with Enrichr.
A list with the unique IDs for your uploaded gene list. 'userListId' is the ID required for later steps.
"POST https://maayanlab.cloud/Enrichr/addList"
"POST https://maayanlab.cloud/speedrichr/api/addList"
Chen, E.Y., Tan, C.M., Kou, Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. Bioinformatics 14, 128 (2013). https://doi.org/10.1186/1471-2105-14-128
Maxim V. Kuleshov, Matthew R. Jones, Andrew D. Rouillard, Nicolas F. Fernandez, Qiaonan Duan, Zichen Wang, Simon Koplev, Sherry L. Jenkins, Kathleen M. Jagodnik, Alexander Lachmann, Michael G. McDermott, Caroline D. Monteiro, Gregory W. Gundersen, Avi Ma’ayan, Enrichr: a comprehensive gene set enrichment analysis web server 2016 update, Nucleic Acids Research, Volume 44, Issue W1, 8 July 2016, Pages W90–W97, https://doi.org/10.1093/nar/gkw377
Xie, Z., Bailey, A., Kuleshov, M. V., Clarke, D. J. B., Evangelista, J. E., Jenkins, S. L., Lachmann, A., Wojciechowicz, M. L., Kropiwnicki, E., Jagodnik, K. M., Jeon, M., & Ma’ayan, A. (2021). Gene set knowledge discovery with Enrichr. Current Protocols, 1, e90. doi: 10.1002/cpz1.90
Other "Enrichr":
rba_enrichr()
,
rba_enrichr_add_background()
,
rba_enrichr_enrich()
,
rba_enrichr_gene_map()
,
rba_enrichr_libs()
,
rba_enrichr_view_list()
rba_enrichr_add_list(gene_list = c("TP53", "TNF", "EGFR"), description = "tumoral genes", speedrichr = FALSE) rba_enrichr_add_list(gene_list = c("RAG1", "RAG2", "DNTT", "LIG4", "ARTEMIS"), description = "TCR rearrangment", speedrichr = TRUE)
rba_enrichr_add_list(gene_list = c("TP53", "TNF", "EGFR"), description = "tumoral genes", speedrichr = FALSE) rba_enrichr_add_list(gene_list = c("RAG1", "RAG2", "DNTT", "LIG4", "ARTEMIS"), description = "TCR rearrangment", speedrichr = TRUE)
This function retrieves enrichment analysis results for your supplied 'user_list_id' against one or multiple Enrichr libraries.
rba_enrichr_enrich( user_list_id, gene_set_library = "all", regex_library_name = TRUE, organism = "human", background_id = NULL, progress_bar = TRUE, ... )
rba_enrichr_enrich( user_list_id, gene_set_library = "all", regex_library_name = TRUE, organism = "human", background_id = NULL, progress_bar = TRUE, ... )
user_list_id |
An ID returned after uploading a gene list
using |
gene_set_library |
One of the:
|
regex_library_name |
logical: if TRUE (default) the supplied gene_set_library will be considered as a regex pattern. If FALSE, gene_set_library will be considered as an exact match. |
organism |
(default = "human") Which model organism version of Enrichr to use? Available options are: "human", (H. sapiens & M. musculus), "fly" (D. melanogaster), "yeast" (S. cerevisiae), "worm" (C. elegans) and "fish" (D. rerio). If 'background_id' is provided, the only available option is "human". |
background_id |
An ID returned after uploading a background gene
list using |
progress_bar |
logical: (default = TRUE) if multiple Enrichr libraries are selected, should a progress bar be displayed? |
... |
rbioapi option(s). See |
If 'background_id' is supplied, this function will interact with the
speedrichr API. In this case, 'user_list_id' must have been obtained
from a rba_enrichr_add_list
call with the 'speedrichr'
parameter set to 'TRUE'. Additionally, this feature is only available
for "human" organism.
Please note that rba_enrichr
provides a one-step and
more convenient way to automatically handle this and other required
function calls needed to perform gene set enrichment analysis with Enrichr.
A list containing data frames of the enrichment results of your supplied gene-list against the selected Enrichr libraries.
"GET https://maayanlab.cloud/Enrichr/enrich"
"POST https://maayanlab.cloud/speedrichr/api/backgroundenrich"
Chen, E.Y., Tan, C.M., Kou, Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. Bioinformatics 14, 128 (2013). https://doi.org/10.1186/1471-2105-14-128
Maxim V. Kuleshov, Matthew R. Jones, Andrew D. Rouillard, Nicolas F. Fernandez, Qiaonan Duan, Zichen Wang, Simon Koplev, Sherry L. Jenkins, Kathleen M. Jagodnik, Alexander Lachmann, Michael G. McDermott, Caroline D. Monteiro, Gregory W. Gundersen, Avi Ma’ayan, Enrichr: a comprehensive gene set enrichment analysis web server 2016 update, Nucleic Acids Research, Volume 44, Issue W1, 8 July 2016, Pages W90–W97, https://doi.org/10.1093/nar/gkw377
Xie, Z., Bailey, A., Kuleshov, M. V., Clarke, D. J. B., Evangelista, J. E., Jenkins, S. L., Lachmann, A., Wojciechowicz, M. L., Kropiwnicki, E., Jagodnik, K. M., Jeon, M., & Ma’ayan, A. (2021). Gene set knowledge discovery with Enrichr. Current Protocols, 1, e90. doi: 10.1002/cpz1.90
Other "Enrichr":
rba_enrichr()
,
rba_enrichr_add_background()
,
rba_enrichr_add_list()
,
rba_enrichr_gene_map()
,
rba_enrichr_libs()
,
rba_enrichr_view_list()
## Not run: rba_enrichr_enrich(user_list_id = 11111) ## End(Not run) ## Not run: rba_enrichr_enrich(user_list_id = 11111, gene_set_library = "GO_Molecular_Function_2017", regex_library_name = FALSE) ## End(Not run) ## Not run: rba_enrichr_enrich(user_list_id = 11111, gene_set_library = "go", regex_library_name = TRUE) ## End(Not run)
## Not run: rba_enrichr_enrich(user_list_id = 11111) ## End(Not run) ## Not run: rba_enrichr_enrich(user_list_id = 11111, gene_set_library = "GO_Molecular_Function_2017", regex_library_name = FALSE) ## End(Not run) ## Not run: rba_enrichr_enrich(user_list_id = 11111, gene_set_library = "go", regex_library_name = TRUE) ## End(Not run)
This function will search the gene and retrieve a list of Enrichr Terms that contains that gene.
rba_enrichr_gene_map(gene, categorize = FALSE, organism = "human", ...)
rba_enrichr_gene_map(gene, categorize = FALSE, organism = "human", ...)
gene |
character: An Entrez gene symbol. |
categorize |
logical: Should the category information be included? |
organism |
(default = "human") Which model organism version of Enrichr to use? Available options are: "human", (H. sapiens & M. musculus), "fly" (D. melanogaster), "yeast" (S. cerevisiae), "worm" (C. elegans) and "fish" (D. rerio). |
... |
rbioapi option(s). See |
A nested list containing the search results of your supplied gene.
"GET https://maayanlab.cloud/Enrichr/genemap"
Chen, E.Y., Tan, C.M., Kou, Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. Bioinformatics 14, 128 (2013). https://doi.org/10.1186/1471-2105-14-128
Maxim V. Kuleshov, Matthew R. Jones, Andrew D. Rouillard, Nicolas F. Fernandez, Qiaonan Duan, Zichen Wang, Simon Koplev, Sherry L. Jenkins, Kathleen M. Jagodnik, Alexander Lachmann, Michael G. McDermott, Caroline D. Monteiro, Gregory W. Gundersen, Avi Ma’ayan, Enrichr: a comprehensive gene set enrichment analysis web server 2016 update, Nucleic Acids Research, Volume 44, Issue W1, 8 July 2016, Pages W90–W97, https://doi.org/10.1093/nar/gkw377
Xie, Z., Bailey, A., Kuleshov, M. V., Clarke, D. J. B., Evangelista, J. E., Jenkins, S. L., Lachmann, A., Wojciechowicz, M. L., Kropiwnicki, E., Jagodnik, K. M., Jeon, M., & Ma’ayan, A. (2021). Gene set knowledge discovery with Enrichr. Current Protocols, 1, e90. doi: 10.1002/cpz1.90
Other "Enrichr":
rba_enrichr()
,
rba_enrichr_add_background()
,
rba_enrichr_add_list()
,
rba_enrichr_enrich()
,
rba_enrichr_libs()
,
rba_enrichr_view_list()
rba_enrichr_gene_map(gene = "p53") rba_enrichr_gene_map(gene = "p53", categorize = TRUE)
rba_enrichr_gene_map(gene = "p53") rba_enrichr_gene_map(gene = "p53", categorize = TRUE)
This function retrieves a list of libraries available in Enrichr along with their associated statistics. Each library represents a collection of gene sets that can be used for enrichment analysis.
rba_enrichr_libs(organism = "human", store_in_options = TRUE, ...)
rba_enrichr_libs(organism = "human", store_in_options = TRUE, ...)
organism |
(default = "human") Which model organism version of Enrichr to use? Available options are: "human", (H. sapiens & M. musculus), "fly" (D. melanogaster), "yeast" (S. cerevisiae), "worm" (C. elegans) and "fish" (D. rerio). |
store_in_options |
logical: (default = TRUE) Should a list of available Enrichr libraries be saved as a global option? |
... |
rbioapi option(s). See |
By default, this function will save the library names as a global option
("rba_enrichr_libs") for other Enrichr functions that internally require
the names of Enrichr libraries. You should call this function once per
R session with the argument 'store_in_options = TRUE' before
using rba_enrichr_enrich
or rba_enrichr
.
However, if you do not explicitly call it, rbioapi will automatically
execute this function in the background the when it is needed.
Please note that rba_enrichr
provides a one-step and
more convenient way to automatically handle this and other required
function calls needed to perform gene set enrichment analysis with Enrichr.
A data frame with the names of available library in Enrichr and their statistics.
"GET https://maayanlab.cloud/Enrichr/datasetStatistics"
Chen, E.Y., Tan, C.M., Kou, Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. Bioinformatics 14, 128 (2013). https://doi.org/10.1186/1471-2105-14-128
Maxim V. Kuleshov, Matthew R. Jones, Andrew D. Rouillard, Nicolas F. Fernandez, Qiaonan Duan, Zichen Wang, Simon Koplev, Sherry L. Jenkins, Kathleen M. Jagodnik, Alexander Lachmann, Michael G. McDermott, Caroline D. Monteiro, Gregory W. Gundersen, Avi Ma’ayan, Enrichr: a comprehensive gene set enrichment analysis web server 2016 update, Nucleic Acids Research, Volume 44, Issue W1, 8 July 2016, Pages W90–W97, https://doi.org/10.1093/nar/gkw377
Xie, Z., Bailey, A., Kuleshov, M. V., Clarke, D. J. B., Evangelista, J. E., Jenkins, S. L., Lachmann, A., Wojciechowicz, M. L., Kropiwnicki, E., Jagodnik, K. M., Jeon, M., & Ma’ayan, A. (2021). Gene set knowledge discovery with Enrichr. Current Protocols, 1, e90. doi: 10.1002/cpz1.90
Other "Enrichr":
rba_enrichr()
,
rba_enrichr_add_background()
,
rba_enrichr_add_list()
,
rba_enrichr_enrich()
,
rba_enrichr_gene_map()
,
rba_enrichr_view_list()
rba_enrichr_libs()
rba_enrichr_libs()
Retrieve the list of uploaded genes with a given 'user list ID'.
rba_enrichr_view_list( user_list_id, organism = "human", speedrichr = FALSE, ... )
rba_enrichr_view_list( user_list_id, organism = "human", speedrichr = FALSE, ... )
user_list_id |
a user list ID returned after uploading a gene
list using |
organism |
(default = "human") Which model organism version of Enrichr to use? Available options are: "human", (H. sapiens & M. musculus), "fly" (D. melanogaster), "yeast" (S. cerevisiae), "worm" (C. elegans) and "fish" (D. rerio). |
speedrichr |
logical (default = FALSE) Did you upload your gene list to speedrichr API? (i.e. did you intend to use this gene list along with a background gene list?) |
... |
rbioapi option(s). See |
A list containing the genes and description associated to the supplied user_list_id.
"GET https://maayanlab.cloud/Enrichr/view"
Chen, E.Y., Tan, C.M., Kou, Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. Bioinformatics 14, 128 (2013). https://doi.org/10.1186/1471-2105-14-128
Maxim V. Kuleshov, Matthew R. Jones, Andrew D. Rouillard, Nicolas F. Fernandez, Qiaonan Duan, Zichen Wang, Simon Koplev, Sherry L. Jenkins, Kathleen M. Jagodnik, Alexander Lachmann, Michael G. McDermott, Caroline D. Monteiro, Gregory W. Gundersen, Avi Ma’ayan, Enrichr: a comprehensive gene set enrichment analysis web server 2016 update, Nucleic Acids Research, Volume 44, Issue W1, 8 July 2016, Pages W90–W97, https://doi.org/10.1093/nar/gkw377
Xie, Z., Bailey, A., Kuleshov, M. V., Clarke, D. J. B., Evangelista, J. E., Jenkins, S. L., Lachmann, A., Wojciechowicz, M. L., Kropiwnicki, E., Jagodnik, K. M., Jeon, M., & Ma’ayan, A. (2021). Gene set knowledge discovery with Enrichr. Current Protocols, 1, e90. doi: 10.1002/cpz1.90
Other "Enrichr":
rba_enrichr()
,
rba_enrichr_add_background()
,
rba_enrichr_add_list()
,
rba_enrichr_enrich()
,
rba_enrichr_gene_map()
,
rba_enrichr_libs()
## Not run: rba_enrichr_view_list(user_list_id = 11111) ## End(Not run)
## Not run: rba_enrichr_view_list(user_list_id = 11111) ## End(Not run)
JASPAR organizes matrix profiles into collections. Using this function, you can retrieve a list of available collections in a JASPAR release.
rba_jaspar_collections(release = 2024, ...)
rba_jaspar_collections(release = 2024, ...)
release |
Numeric: (default = 2024) Which JASPAR database release to use? Available options are: 2024, 2022, 2020, 2018, 2016, and 2014. |
... |
rbioapi option(s). See |
A data frame with collections' names and URLs.
"GET https://jaspar.elixir.no/api/v1/collections/"
Rauluseviciute I, Riudavets-Puig R, Blanc-Mathieu R, Castro-Mondragon JA, Ferenc K, Kumar V, Lemma RB, Lucas J, Chèneby J, Baranasic D, Khan A, Fornes O, Gundersen S, Johansen M, Hovig E, Lenhard B, Sandelin A, Wasserman WW, Parcy F, Mathelier A JASPAR 2024: 20th anniversary of the open-access database of transcription factor binding profiles Nucleic Acids Res. in_press; doi: 10.1093/nar/gkad1059
Khan, A. and Mathelier, A. JASPAR RESTful API: accessing JASPAR data from any programming language. Bioinformatics, 2017, doi: 10.1093/bioinformatics/btx804
Other "JASPAR":
rba_jaspar_collections_matrices()
,
rba_jaspar_matrix()
,
rba_jaspar_matrix_search()
,
rba_jaspar_matrix_versions()
,
rba_jaspar_releases()
,
rba_jaspar_sites()
,
rba_jaspar_species()
,
rba_jaspar_species_matrices()
,
rba_jaspar_taxons()
,
rba_jaspar_taxons_matrices()
,
rba_jaspar_tffm()
,
rba_jaspar_tffm_search()
rba_jaspar_collections(release = 2024)
rba_jaspar_collections(release = 2024)
Using this function you can list all matrix profiles that are available in a collection from a JASPAR release.
rba_jaspar_collections_matrices( collection, release = 2024, only_last_version = FALSE, search = NULL, order = NULL, page_size = 1000, page = 1, ... )
rba_jaspar_collections_matrices( collection, release = 2024, only_last_version = FALSE, search = NULL, order = NULL, page_size = 1000, page = 1, ... )
collection |
JASPAR Collection's name. See JASPAR Collections for information. The accepted values are: "CORE", "CNE", "PHYLOFACTS", "SPLICE", "POLII", "FAM", "PBM", "PBM_HOMEO", "PBM_HLH", and "UNVALIDATED". |
release |
Numeric: (default = 2024) Which JASPAR database release to use? Available options are: 2024, 2022, 2020, 2018, 2016, and 2014. |
only_last_version |
Logical: (default = FALSE) If TRUE, only the latest version of a matrix profile will be returned. |
search |
Character: A search term. |
order |
Character: A character string or a vector of character strings
of field names that will be used to order the results.
|
page_size |
Numeric: (default = 1000) This resource returns paginated results. What is the maximum numbers of results that you want to retrieve per a page? Accepted values are between 1 and 1000. |
page |
Numeric: Which page of the results to retrieve? The accepted values depend on the page size and number of results. |
... |
rbioapi option(s). See |
The results are paginated. You can control the page's size number
with the function's arguments. Also, you can use rba_pages
to automatically iterate over multiple pages.
A list that contains a data frame with information of matrix profiles available in the collection.
"GET https://jaspar.elixir.no/api/v1/collections/{collection}/"
Rauluseviciute I, Riudavets-Puig R, Blanc-Mathieu R, Castro-Mondragon JA, Ferenc K, Kumar V, Lemma RB, Lucas J, Chèneby J, Baranasic D, Khan A, Fornes O, Gundersen S, Johansen M, Hovig E, Lenhard B, Sandelin A, Wasserman WW, Parcy F, Mathelier A JASPAR 2024: 20th anniversary of the open-access database of transcription factor binding profiles Nucleic Acids Res. in_press; doi: 10.1093/nar/gkad1059
Khan, A. and Mathelier, A. JASPAR RESTful API: accessing JASPAR data from any programming language. Bioinformatics, 2017, doi: 10.1093/bioinformatics/btx804
Other "JASPAR":
rba_jaspar_collections()
,
rba_jaspar_matrix()
,
rba_jaspar_matrix_search()
,
rba_jaspar_matrix_versions()
,
rba_jaspar_releases()
,
rba_jaspar_sites()
,
rba_jaspar_species()
,
rba_jaspar_species_matrices()
,
rba_jaspar_taxons()
,
rba_jaspar_taxons_matrices()
,
rba_jaspar_tffm()
,
rba_jaspar_tffm_search()
rba_jaspar_collections_matrices(collection = "CORE", release = 2024, page_size = 100, page = 2)
rba_jaspar_collections_matrices(collection = "CORE", release = 2024, page_size = 100, page = 2)
Using this function you can retrieve a Position Frequency Matrices (PFM) associated with a matrix profile Identifier along with its details and annotations. If a base ID (i.e. without version suffix) was supplied, the latest version will be returned.
rba_jaspar_matrix(matrix_id, file_format = NULL, save_to = NULL, ...)
rba_jaspar_matrix(matrix_id, file_format = NULL, save_to = NULL, ...)
matrix_id |
Character: A matrix profile Identifier. It has "base_id.version" naming schema. |
file_format |
Character: Instead of returning a R object, you can directly download the profile matrix in file with this format. Supported formats are: "yaml", "jaspar", "transfac", "meme" and "pfm" |
save_to |
NULL or Character:
|
... |
rbioapi option(s). See |
A list that contains the PFM along with its details and annotations. If file_format was supplied, an un-parsed character string with the file's content.
"GET https://jaspar.elixir.no/api/v1/matrix/{matrix_id}/"
Rauluseviciute I, Riudavets-Puig R, Blanc-Mathieu R, Castro-Mondragon JA, Ferenc K, Kumar V, Lemma RB, Lucas J, Chèneby J, Baranasic D, Khan A, Fornes O, Gundersen S, Johansen M, Hovig E, Lenhard B, Sandelin A, Wasserman WW, Parcy F, Mathelier A JASPAR 2024: 20th anniversary of the open-access database of transcription factor binding profiles Nucleic Acids Res. in_press; doi: 10.1093/nar/gkad1059
Khan, A. and Mathelier, A. JASPAR RESTful API: accessing JASPAR data from any programming language. Bioinformatics, 2017, doi: 10.1093/bioinformatics/btx804
Other "JASPAR":
rba_jaspar_collections()
,
rba_jaspar_collections_matrices()
,
rba_jaspar_matrix_search()
,
rba_jaspar_matrix_versions()
,
rba_jaspar_releases()
,
rba_jaspar_sites()
,
rba_jaspar_species()
,
rba_jaspar_species_matrices()
,
rba_jaspar_taxons()
,
rba_jaspar_taxons_matrices()
,
rba_jaspar_tffm()
,
rba_jaspar_tffm_search()
rba_jaspar_matrix("MA0600.2") ## Not run: rba_jaspar_matrix(matrix_id = "MA0600.2", file_format = "meme", save_to = "my_matrix.meme") ## End(Not run)
rba_jaspar_matrix("MA0600.2") ## Not run: rba_jaspar_matrix(matrix_id = "MA0600.2", file_format = "meme", save_to = "my_matrix.meme") ## End(Not run)
You can use this function to list the JASPAR matrix profiles that match your search query, or run the function without any arguments to return a list of every matrix profile available in the latest release.
rba_jaspar_matrix_search( term = NULL, tf_name = NULL, tf_class = NULL, tf_family = NULL, tax_group = NULL, tax_id = NULL, data_type = NULL, collection = NULL, release = 2024, only_last_version = FALSE, order = NULL, page_size = 1000, page = 1, ... )
rba_jaspar_matrix_search( term = NULL, tf_name = NULL, tf_class = NULL, tf_family = NULL, tax_group = NULL, tax_id = NULL, data_type = NULL, collection = NULL, release = 2024, only_last_version = FALSE, order = NULL, page_size = 1000, page = 1, ... )
term |
Character: A search term. |
tf_name |
Character: Transcription factor names (Case-sensitive). |
tf_class |
Character: Transcription factor class |
tf_family |
Character: Transcription factor family |
tax_group |
Character: Taxonomic group. Use
|
tax_id |
Numeric: NCBI taxonomic Identifier of species. Use
|
data_type |
Character: Type of the data (i.e The Methodology used for matrix construction). For example: "ChIP-seq", "PBM" |
collection |
Character: JASPAR matrix profile collection name. USE
|
release |
Numeric: (default = 2024) Which JASPAR database release to use? Available options are: 2024, 2022, 2020, 2018, 2016, and 2014. |
only_last_version |
Logical: (default = FALSE) If TRUE, only the latest version of a matrix profile will be returned. |
order |
Character: A character string or a vector of character strings
of field names that will be used to order the results.
|
page_size |
Numeric: (default = 1000) This resource returns paginated results. What is the maximum numbers of results that you want to retrieve per a page? Accepted values are between 1 and 1000. |
page |
Numeric: Which page of the results to retrieve? The accepted values depend on the page size and number of results. |
... |
rbioapi option(s). See |
Note that this is a search function. Thus, you are not required to fill
every argument; You may use whatever combinations of arguments you see
fit for your query.
The results are paginated. You can control the page's size number
with the function's arguments. Also, you can use rba_pages
to automatically iterate over multiple pages.
A list that contains a data frame of matrix profiles' information.
"GET https://jaspar.elixir.no/api/v1/api/v1/matrix/"
Rauluseviciute I, Riudavets-Puig R, Blanc-Mathieu R, Castro-Mondragon JA, Ferenc K, Kumar V, Lemma RB, Lucas J, Chèneby J, Baranasic D, Khan A, Fornes O, Gundersen S, Johansen M, Hovig E, Lenhard B, Sandelin A, Wasserman WW, Parcy F, Mathelier A JASPAR 2024: 20th anniversary of the open-access database of transcription factor binding profiles Nucleic Acids Res. in_press; doi: 10.1093/nar/gkad1059
Khan, A. and Mathelier, A. JASPAR RESTful API: accessing JASPAR data from any programming language. Bioinformatics, 2017, doi: 10.1093/bioinformatics/btx804
Other "JASPAR":
rba_jaspar_collections()
,
rba_jaspar_collections_matrices()
,
rba_jaspar_matrix()
,
rba_jaspar_matrix_versions()
,
rba_jaspar_releases()
,
rba_jaspar_sites()
,
rba_jaspar_species()
,
rba_jaspar_species_matrices()
,
rba_jaspar_taxons()
,
rba_jaspar_taxons_matrices()
,
rba_jaspar_tffm()
,
rba_jaspar_tffm_search()
rba_jaspar_matrix_search(term = "FOX") rba_jaspar_matrix_search(tf_name = "FOXP3") rba_jaspar_matrix_search(tf_name = "FOXP3", only_last_version = TRUE) rba_jaspar_matrix_search(tf_class = "Zipper-Type") rba_jaspar_matrix_search(tax_group = "insects") rba_jaspar_matrix_search(page_size = 100)
rba_jaspar_matrix_search(term = "FOX") rba_jaspar_matrix_search(tf_name = "FOXP3") rba_jaspar_matrix_search(tf_name = "FOXP3", only_last_version = TRUE) rba_jaspar_matrix_search(tf_class = "Zipper-Type") rba_jaspar_matrix_search(tax_group = "insects") rba_jaspar_matrix_search(page_size = 100)
Since JASPAR release 2010, the matrix profiles are versioned; So, a matrix profile Identifier has "base_id.version" naming schema. Using this function you can retrieve a list of matrix profiles associated with a base (stable) ID.
rba_jaspar_matrix_versions(base_id, order = NULL, ...)
rba_jaspar_matrix_versions(base_id, order = NULL, ...)
base_id |
Character: A base (stable) Identifier. A matrix profile identifier has "base_id.version" naming schema |
order |
Character: A character string or a vector of character strings
of field names that will be used to order the results.
|
... |
rbioapi option(s). See |
A data frame of matrix profiles' versions information.
"GET https://jaspar.elixir.no/api/v1/matrix/{base_id}/versions/"
Rauluseviciute I, Riudavets-Puig R, Blanc-Mathieu R, Castro-Mondragon JA, Ferenc K, Kumar V, Lemma RB, Lucas J, Chèneby J, Baranasic D, Khan A, Fornes O, Gundersen S, Johansen M, Hovig E, Lenhard B, Sandelin A, Wasserman WW, Parcy F, Mathelier A JASPAR 2024: 20th anniversary of the open-access database of transcription factor binding profiles Nucleic Acids Res. in_press; doi: 10.1093/nar/gkad1059
Khan, A. and Mathelier, A. JASPAR RESTful API: accessing JASPAR data from any programming language. Bioinformatics, 2017, doi: 10.1093/bioinformatics/btx804
Other "JASPAR":
rba_jaspar_collections()
,
rba_jaspar_collections_matrices()
,
rba_jaspar_matrix()
,
rba_jaspar_matrix_search()
,
rba_jaspar_releases()
,
rba_jaspar_sites()
,
rba_jaspar_species()
,
rba_jaspar_species_matrices()
,
rba_jaspar_taxons()
,
rba_jaspar_taxons_matrices()
,
rba_jaspar_tffm()
,
rba_jaspar_tffm_search()
rba_jaspar_matrix_versions("MA0600")
rba_jaspar_matrix_versions("MA0600")
If a release number was supplied, this function will return the details of that release. Otherwise, if the function was called without "release" argument, a list of all JASPAR database releases will be returned.
rba_jaspar_releases(release_number = NULL, ...)
rba_jaspar_releases(release_number = NULL, ...)
release_number |
Numeric: Which JASPAR database release number information's to retrieve? If left NULL (the default), a list of all JASPAR database releases will be returned. Available options are 1 to 8. |
... |
rbioapi option(s). See |
A list that contains all JASPAR database releases' information or details of a particular release.
"GET https://jaspar.elixir.no/api/v1/releases/"
"GET https://jaspar.elixir.no/api/v1/releases/{release_number}/"
Rauluseviciute I, Riudavets-Puig R, Blanc-Mathieu R, Castro-Mondragon JA, Ferenc K, Kumar V, Lemma RB, Lucas J, Chèneby J, Baranasic D, Khan A, Fornes O, Gundersen S, Johansen M, Hovig E, Lenhard B, Sandelin A, Wasserman WW, Parcy F, Mathelier A JASPAR 2024: 20th anniversary of the open-access database of transcription factor binding profiles Nucleic Acids Res. in_press; doi: 10.1093/nar/gkad1059
Khan, A. and Mathelier, A. JASPAR RESTful API: accessing JASPAR data from any programming language. Bioinformatics, 2017, doi: 10.1093/bioinformatics/btx804
Other "JASPAR":
rba_jaspar_collections()
,
rba_jaspar_collections_matrices()
,
rba_jaspar_matrix()
,
rba_jaspar_matrix_search()
,
rba_jaspar_matrix_versions()
,
rba_jaspar_sites()
,
rba_jaspar_species()
,
rba_jaspar_species_matrices()
,
rba_jaspar_taxons()
,
rba_jaspar_taxons_matrices()
,
rba_jaspar_tffm()
,
rba_jaspar_tffm_search()
rba_jaspar_releases() rba_jaspar_releases(7)
rba_jaspar_releases() rba_jaspar_releases(7)
Use this function to retrieve a list of transcription factor binding sites associated with a matrix profile.
rba_jaspar_sites(matrix_id, ...)
rba_jaspar_sites(matrix_id, ...)
matrix_id |
Character: A matrix profile Identifier. It has "base_id.version" naming schema. |
... |
rbioapi option(s). See |
A list that contains a data frame with binding sites information.
"GET https://jaspar.elixir.no/api/v1/sites/{matrix_id}/"
Rauluseviciute I, Riudavets-Puig R, Blanc-Mathieu R, Castro-Mondragon JA, Ferenc K, Kumar V, Lemma RB, Lucas J, Chèneby J, Baranasic D, Khan A, Fornes O, Gundersen S, Johansen M, Hovig E, Lenhard B, Sandelin A, Wasserman WW, Parcy F, Mathelier A JASPAR 2024: 20th anniversary of the open-access database of transcription factor binding profiles Nucleic Acids Res. in_press; doi: 10.1093/nar/gkad1059
Khan, A. and Mathelier, A. JASPAR RESTful API: accessing JASPAR data from any programming language. Bioinformatics, 2017, doi: 10.1093/bioinformatics/btx804
Other "JASPAR":
rba_jaspar_collections()
,
rba_jaspar_collections_matrices()
,
rba_jaspar_matrix()
,
rba_jaspar_matrix_search()
,
rba_jaspar_matrix_versions()
,
rba_jaspar_releases()
,
rba_jaspar_species()
,
rba_jaspar_species_matrices()
,
rba_jaspar_taxons()
,
rba_jaspar_taxons_matrices()
,
rba_jaspar_tffm()
,
rba_jaspar_tffm_search()
rba_jaspar_sites("MA0600.1")
rba_jaspar_sites("MA0600.1")
JASPAR organizes matrix profiles from multiple species in six taxonomic groups. Use this function to retrieve a list of available species in a JASPAR database release.
rba_jaspar_species(release = 2024, search = NULL, order = NULL, ...)
rba_jaspar_species(release = 2024, search = NULL, order = NULL, ...)
release |
Numeric: (default = 2024) Which JASPAR database release to use? Available options are: 2024, 2022, 2020, 2018, 2016, and 2014. |
search |
Character: A search term. |
order |
Character: A character string or a vector of character strings
of field names that will be used to order the results.
|
... |
rbioapi option(s). See |
A data frame with information of available species.
"GET https://jaspar.elixir.no/api/v1/species/"
Rauluseviciute I, Riudavets-Puig R, Blanc-Mathieu R, Castro-Mondragon JA, Ferenc K, Kumar V, Lemma RB, Lucas J, Chèneby J, Baranasic D, Khan A, Fornes O, Gundersen S, Johansen M, Hovig E, Lenhard B, Sandelin A, Wasserman WW, Parcy F, Mathelier A JASPAR 2024: 20th anniversary of the open-access database of transcription factor binding profiles Nucleic Acids Res. in_press; doi: 10.1093/nar/gkad1059
Khan, A. and Mathelier, A. JASPAR RESTful API: accessing JASPAR data from any programming language. Bioinformatics, 2017, doi: 10.1093/bioinformatics/btx804
Other "JASPAR":
rba_jaspar_collections()
,
rba_jaspar_collections_matrices()
,
rba_jaspar_matrix()
,
rba_jaspar_matrix_search()
,
rba_jaspar_matrix_versions()
,
rba_jaspar_releases()
,
rba_jaspar_sites()
,
rba_jaspar_species_matrices()
,
rba_jaspar_taxons()
,
rba_jaspar_taxons_matrices()
,
rba_jaspar_tffm()
,
rba_jaspar_tffm_search()
rba_jaspar_species(release = 2024)
rba_jaspar_species(release = 2024)
JASPAR curates matrix profiles from multiple species in six taxonomic groups. Using this function you can list all matrix profiles that are available in a JASPAR release from a species.
rba_jaspar_species_matrices( tax_id, release = 2024, only_last_version = FALSE, search = NULL, order = NULL, page_size = 1000, page = 1, ... )
rba_jaspar_species_matrices( tax_id, release = 2024, only_last_version = FALSE, search = NULL, order = NULL, page_size = 1000, page = 1, ... )
tax_id |
Numeric: NCBI taxonomic Identifier of species. Use
|
release |
Numeric: (default = 2024) Which JASPAR database release to use? Available options are: 2024, 2022, 2020, 2018, 2016, and 2014. |
only_last_version |
Logical: (default = FALSE) If TRUE, only the latest version of a matrix profile will be returned. |
search |
Character: A search term. |
order |
Character: A character string or a vector of character strings
of field names that will be used to order the results.
|
page_size |
Numeric: (default = 1000) This resource returns paginated results. What is the maximum numbers of results that you want to retrieve per a page? Accepted values are between 1 and 1000. |
page |
Numeric: Which page of the results to retrieve? The accepted values depend on the page size and number of results. |
... |
rbioapi option(s). See |
The results are paginated. You can control the page's size number
with the function's arguments. Also, you can use rba_pages
to automatically iterate over multiple pages.
A list that contains a data frame with information of matrix profiles available for the species.
"GET https://jaspar.elixir.no/api/v1/species/{tax_id}/"
Rauluseviciute I, Riudavets-Puig R, Blanc-Mathieu R, Castro-Mondragon JA, Ferenc K, Kumar V, Lemma RB, Lucas J, Chèneby J, Baranasic D, Khan A, Fornes O, Gundersen S, Johansen M, Hovig E, Lenhard B, Sandelin A, Wasserman WW, Parcy F, Mathelier A JASPAR 2024: 20th anniversary of the open-access database of transcription factor binding profiles Nucleic Acids Res. in_press; doi: 10.1093/nar/gkad1059
Khan, A. and Mathelier, A. JASPAR RESTful API: accessing JASPAR data from any programming language. Bioinformatics, 2017, doi: 10.1093/bioinformatics/btx804
Other "JASPAR":
rba_jaspar_collections()
,
rba_jaspar_collections_matrices()
,
rba_jaspar_matrix()
,
rba_jaspar_matrix_search()
,
rba_jaspar_matrix_versions()
,
rba_jaspar_releases()
,
rba_jaspar_sites()
,
rba_jaspar_species()
,
rba_jaspar_taxons()
,
rba_jaspar_taxons_matrices()
,
rba_jaspar_tffm()
,
rba_jaspar_tffm_search()
rba_jaspar_species_matrices(tax_id = 9606, page_size = 100)
rba_jaspar_species_matrices(tax_id = 9606, page_size = 100)
JASPAR organizes matrix profiles from multiple species in six taxonomic groups. Use this function to retrieve a list of available taxonomic groups in a JASPAR database release.
rba_jaspar_taxons(release = 2024, ...)
rba_jaspar_taxons(release = 2024, ...)
release |
Numeric: (default = 2024) Which JASPAR database release to use? Available options are: 2024, 2022, 2020, 2018, 2016, and 2014. |
... |
rbioapi option(s). See |
A data frame with information of available species.
"GET https://jaspar.elixir.no/api/v1/taxon/"
Rauluseviciute I, Riudavets-Puig R, Blanc-Mathieu R, Castro-Mondragon JA, Ferenc K, Kumar V, Lemma RB, Lucas J, Chèneby J, Baranasic D, Khan A, Fornes O, Gundersen S, Johansen M, Hovig E, Lenhard B, Sandelin A, Wasserman WW, Parcy F, Mathelier A JASPAR 2024: 20th anniversary of the open-access database of transcription factor binding profiles Nucleic Acids Res. in_press; doi: 10.1093/nar/gkad1059
Khan, A. and Mathelier, A. JASPAR RESTful API: accessing JASPAR data from any programming language. Bioinformatics, 2017, doi: 10.1093/bioinformatics/btx804
Other "JASPAR":
rba_jaspar_collections()
,
rba_jaspar_collections_matrices()
,
rba_jaspar_matrix()
,
rba_jaspar_matrix_search()
,
rba_jaspar_matrix_versions()
,
rba_jaspar_releases()
,
rba_jaspar_sites()
,
rba_jaspar_species()
,
rba_jaspar_species_matrices()
,
rba_jaspar_taxons_matrices()
,
rba_jaspar_tffm()
,
rba_jaspar_tffm_search()
rba_jaspar_taxons(release = 2024)
rba_jaspar_taxons(release = 2024)
JASPAR organizes matrix profiles from multiple species in six taxonomic groups. Using this function you can list all matrix profiles that are available in a JASPAR release from a taxonomic group.
rba_jaspar_taxons_matrices( tax_group, release = 2024, only_last_version = FALSE, search = NULL, order = NULL, page_size = 1000, page = 1, ... )
rba_jaspar_taxons_matrices( tax_group, release = 2024, only_last_version = FALSE, search = NULL, order = NULL, page_size = 1000, page = 1, ... )
tax_group |
Character: Taxonomic group. Use
|
release |
Numeric: (default = 2024) Which JASPAR database release to use? Available options are: 2024, 2022, 2020, 2018, 2016, and 2014. |
only_last_version |
Logical: (default = FALSE) If TRUE, only the latest version of a matrix profile will be returned. |
search |
Character: A search term. |
order |
Character: A character string or a vector of character strings
of field names that will be used to order the results.
|
page_size |
Numeric: (default = 1000) This resource returns paginated results. What is the maximum numbers of results that you want to retrieve per a page? Accepted values are between 1 and 1000. |
page |
Numeric: Which page of the results to retrieve? The accepted values depend on the page size and number of results. |
... |
rbioapi option(s). See |
The results are paginated. You can control the page's size number
with the function's arguments. Also, you can use rba_pages
to automatically iterate over multiple pages.
A list that contains a data frame with information of matrix profiles available for the taxonomic group.
"GET https://jaspar.elixir.no/api/v1/taxon/{tax_group}/"
Rauluseviciute I, Riudavets-Puig R, Blanc-Mathieu R, Castro-Mondragon JA, Ferenc K, Kumar V, Lemma RB, Lucas J, Chèneby J, Baranasic D, Khan A, Fornes O, Gundersen S, Johansen M, Hovig E, Lenhard B, Sandelin A, Wasserman WW, Parcy F, Mathelier A JASPAR 2024: 20th anniversary of the open-access database of transcription factor binding profiles Nucleic Acids Res. in_press; doi: 10.1093/nar/gkad1059
Khan, A. and Mathelier, A. JASPAR RESTful API: accessing JASPAR data from any programming language. Bioinformatics, 2017, doi: 10.1093/bioinformatics/btx804
Other "JASPAR":
rba_jaspar_collections()
,
rba_jaspar_collections_matrices()
,
rba_jaspar_matrix()
,
rba_jaspar_matrix_search()
,
rba_jaspar_matrix_versions()
,
rba_jaspar_releases()
,
rba_jaspar_sites()
,
rba_jaspar_species()
,
rba_jaspar_species_matrices()
,
rba_jaspar_taxons()
,
rba_jaspar_tffm()
,
rba_jaspar_tffm_search()
rba_jaspar_taxons_matrices(tax_group = "plants", page_size = 100)
rba_jaspar_taxons_matrices(tax_group = "plants", page_size = 100)
Using this function you can retrieve details and annotations of Transcription Factor flexible models (TFFMs) associated with a TFFM ID. If a base ID (i.e. without version suffix) was supplied, the latest version will be returned.
rba_jaspar_tffm(tffm_id, ...)
rba_jaspar_tffm(tffm_id, ...)
tffm_id |
Character: A TF flexible model (TFFM) Identifier. |
... |
rbioapi option(s). See |
A list that contains the TFFM's information and annotations.
"GET https://jaspar.elixir.no/api/v1/fttm/{tffm_id}/"
Rauluseviciute I, Riudavets-Puig R, Blanc-Mathieu R, Castro-Mondragon JA, Ferenc K, Kumar V, Lemma RB, Lucas J, Chèneby J, Baranasic D, Khan A, Fornes O, Gundersen S, Johansen M, Hovig E, Lenhard B, Sandelin A, Wasserman WW, Parcy F, Mathelier A JASPAR 2024: 20th anniversary of the open-access database of transcription factor binding profiles Nucleic Acids Res. in_press; doi: 10.1093/nar/gkad1059
Khan, A. and Mathelier, A. JASPAR RESTful API: accessing JASPAR data from any programming language. Bioinformatics, 2017, doi: 10.1093/bioinformatics/btx804
Other "JASPAR":
rba_jaspar_collections()
,
rba_jaspar_collections_matrices()
,
rba_jaspar_matrix()
,
rba_jaspar_matrix_search()
,
rba_jaspar_matrix_versions()
,
rba_jaspar_releases()
,
rba_jaspar_sites()
,
rba_jaspar_species()
,
rba_jaspar_species_matrices()
,
rba_jaspar_taxons()
,
rba_jaspar_taxons_matrices()
,
rba_jaspar_tffm_search()
rba_jaspar_tffm("TFFM0056.3")
rba_jaspar_tffm("TFFM0056.3")
You can use this function to list the JASPAR TF flexible models (TFFMs) that match your search query, or run the function without any arguments to return a list of every matrix profile available in the latest release.
rba_jaspar_tffm_search( term = NULL, release = 2024, tax_group = NULL, search = NULL, order = NULL, page_size = 1000, page = 1, ... )
rba_jaspar_tffm_search( term = NULL, release = 2024, tax_group = NULL, search = NULL, order = NULL, page_size = 1000, page = 1, ... )
term |
Character: A search term. |
release |
Numeric: (default = 2024) Which JASPAR database release to use? Available options are: 2024, 2022, 2020, 2018, 2016, and 2014. |
tax_group |
Character: Taxonomic group. Use
|
search |
Character: A search term. |
order |
Character: A character string or a vector of character strings
of field names that will be used to order the results.
|
page_size |
Numeric: (default = 1000) This resource returns paginated results. What is the maximum numbers of results that you want to retrieve per a page? Accepted values are between 1 and 1000. |
page |
Numeric: Which page of the results to retrieve? The accepted values depend on the page size and number of results. |
... |
rbioapi option(s). See |
Note that this is a search function. Thus, you are not required to fill
every argument; You may use whatever combinations of arguments you see
fit for your query.
The results are paginated. You can control the page's size number
with the function's arguments. Also, you can use rba_pages
to automatically iterate over multiple pages.
A list that contains a data frame with information of query hits' TFFMs.
"GET https://jaspar.elixir.no/api/v1/api/v1/tffm/"
Rauluseviciute I, Riudavets-Puig R, Blanc-Mathieu R, Castro-Mondragon JA, Ferenc K, Kumar V, Lemma RB, Lucas J, Chèneby J, Baranasic D, Khan A, Fornes O, Gundersen S, Johansen M, Hovig E, Lenhard B, Sandelin A, Wasserman WW, Parcy F, Mathelier A JASPAR 2024: 20th anniversary of the open-access database of transcription factor binding profiles Nucleic Acids Res. in_press; doi: 10.1093/nar/gkad1059
Khan, A. and Mathelier, A. JASPAR RESTful API: accessing JASPAR data from any programming language. Bioinformatics, 2017, doi: 10.1093/bioinformatics/btx804
Other "JASPAR":
rba_jaspar_collections()
,
rba_jaspar_collections_matrices()
,
rba_jaspar_matrix()
,
rba_jaspar_matrix_search()
,
rba_jaspar_matrix_versions()
,
rba_jaspar_releases()
,
rba_jaspar_sites()
,
rba_jaspar_species()
,
rba_jaspar_species_matrices()
,
rba_jaspar_taxons()
,
rba_jaspar_taxons_matrices()
,
rba_jaspar_tffm()
rba_jaspar_tffm_search(term = "FOX") rba_jaspar_tffm_search(tax_group = "insects") rba_jaspar_tffm_search(page_size = 100)
rba_jaspar_tffm_search(term = "FOX") rba_jaspar_tffm_search(tax_group = "insects") rba_jaspar_tffm_search(page_size = 100)
For each Combination of species and miRNA type, Only a pre-defined categories groups are supported. Use this function to retrieve a list of supported categories for a given combination of Species and miRNA type.
rba_mieaa_cats(mirna_type, species, ...)
rba_mieaa_cats(mirna_type, species, ...)
mirna_type |
Type of your miRNA accession. either "mature" or "precursor". |
species |
Fully or partially matching Scientific name, abbreviation or NCBI taxon ID of one of the following species:
|
... |
rbioapi option(s). See |
a named character vector with the supported categories for your supplied input combination.
"GET https://ccb-compute2.cs.uni-saarland.de/mieaa2/api/v1/enrichment_categories/{species}/{mirna_type}/"
Fabian Kern, Tobias Fehlmann, Jeffrey Solomon, Louisa Schwed, Nadja Grammes, Christina Backes, Kendall Van Keuren-Jensen, David Wesley Craig,Eckart Meese, Andreas Keller, miEAA 2.0: integrating multi-species microRNA enrichment analysis and workflow management systems, Nucleic Acids Research, Volume 48, Issue W1, 02 July 2020, Pages W521–W528, https://doi.org/10.1093/nar/gkaa309
Other "miEAA":
rba_mieaa_convert_type()
,
rba_mieaa_convert_version()
,
rba_mieaa_enrich()
,
rba_mieaa_enrich_results()
,
rba_mieaa_enrich_status()
,
rba_mieaa_enrich_submit()
rba_mieaa_cats("mature", "Homo sapiens")
rba_mieaa_cats("mature", "Homo sapiens")
miRBase miRNA accession could refer to either mature or precursor miRNAs. (see: A uniform system for microRNA annotation). Use this function to mature miRNA accession to corresponding miRNA accessions or vice versa.
rba_mieaa_convert_type( mirna, input_type, only_unique = FALSE, simple_output = FALSE, ... )
rba_mieaa_convert_type( mirna, input_type, only_unique = FALSE, simple_output = FALSE, ... )
mirna |
A vector of miRNA accessions to be converted. |
input_type |
Type of your supplied miRNA accession. either "mature" or "precursor". |
only_unique |
(logical) miRBase precursor and mature miRNA accessions are not uniquely mapped. (i.e. you may get more than one results for a given accession). set this to TRUE to only retrieve the unique mappings. (default = FALSE) |
simple_output |
(logical) If FALSE (default), the result will be a two-columned data frame with your input and output accessions. Otherwise, if TRUE, only the output miRNA accessions will be returned. |
... |
rbioapi option(s). See |
Depending on the arguments, a data frame or a character vectors containing the miRNA accessions in your output version.
"POST https://ccb-compute2.cs.uni-saarland.de/mieaa2/api/v1/mirna_precursor_converter/"
Fabian Kern, Tobias Fehlmann, Jeffrey Solomon, Louisa Schwed, Nadja Grammes, Christina Backes, Kendall Van Keuren-Jensen, David Wesley Craig,Eckart Meese, Andreas Keller, miEAA 2.0: integrating multi-species microRNA enrichment analysis and workflow management systems, Nucleic Acids Research, Volume 48, Issue W1, 02 July 2020, Pages W521–W528, https://doi.org/10.1093/nar/gkaa309
Other "miEAA":
rba_mieaa_cats()
,
rba_mieaa_convert_version()
,
rba_mieaa_enrich()
,
rba_mieaa_enrich_results()
,
rba_mieaa_enrich_status()
,
rba_mieaa_enrich_submit()
Sys.sleep(1) # to prevent 429 error during R CMD check rba_mieaa_convert_type(mirna = c("hsa-miR-20b-5p", "hsa-miR-144-5p"), input_type = "mature")
Sys.sleep(1) # to prevent 429 error during R CMD check rba_mieaa_convert_type(mirna = c("hsa-miR-20b-5p", "hsa-miR-144-5p"), input_type = "mature")
miEAA works with miRBASE v22 accession. Using This function you can convert a set of mature or precursor miRNA accession between two given miRBase versions.
rba_mieaa_convert_version( mirna, mirna_type, input_version, output_version, simple_output = FALSE, ... )
rba_mieaa_convert_version( mirna, mirna_type, input_version, output_version, simple_output = FALSE, ... )
mirna |
A vector of miRNA accessions to be converted. |
mirna_type |
Type of your supplied miRNA accession. either "mature" or "precursor". |
input_version |
(numeric) miRBase version of your supplied miRNA accessions. |
output_version |
(numeric) To what version should your miRNA accessions be converted? |
simple_output |
(logical) If FALSE (default), the result will be a two-columned data frame with your input and output accessions. Otherwise, if TRUE, only the output miRNA accessions will be returned. |
... |
rbioapi option(s). See |
Depending on the arguments, a data frame or a character vectors containing the miRNA accessions in your output version.
"POST https://ccb-compute2.cs.uni-saarland.de/mieaa2/api/v1/mirbase_converter/"
Fabian Kern, Tobias Fehlmann, Jeffrey Solomon, Louisa Schwed, Nadja Grammes, Christina Backes, Kendall Van Keuren-Jensen, David Wesley Craig,Eckart Meese, Andreas Keller, miEAA 2.0: integrating multi-species microRNA enrichment analysis and workflow management systems, Nucleic Acids Research, Volume 48, Issue W1, 02 July 2020, Pages W521–W528, https://doi.org/10.1093/nar/gkaa309
Other "miEAA":
rba_mieaa_cats()
,
rba_mieaa_convert_type()
,
rba_mieaa_enrich()
,
rba_mieaa_enrich_results()
,
rba_mieaa_enrich_status()
,
rba_mieaa_enrich_submit()
Sys.sleep(1) # to prevent 429 error during R CMD check rba_mieaa_convert_version(mirna = c("hsa-miR-20b-5p", "hsa-miR-144-5p"), mirna_type = "mature", input_version = 22, output_version = 16)
Sys.sleep(1) # to prevent 429 error during R CMD check rba_mieaa_convert_version(mirna = c("hsa-miR-20b-5p", "hsa-miR-144-5p"), mirna_type = "mature", input_version = 22, output_version = 16)
This function is a wrapper for the multiple function calls necessary to perform enrichment analysis on a given miRNA list using miEAA. see details section for more information.
rba_mieaa_enrich( test_set, mirna_type, test_type, species, categories = NULL, p_adj_method = "fdr", independent_p_adj = TRUE, sig_level = 0.05, min_hits = 2, ref_set = NULL, sort_by = "p_adjusted", sort_asc = TRUE, ... )
rba_mieaa_enrich( test_set, mirna_type, test_type, species, categories = NULL, p_adj_method = "fdr", independent_p_adj = TRUE, sig_level = 0.05, min_hits = 2, ref_set = NULL, sort_by = "p_adjusted", sort_asc = TRUE, ... )
test_set |
a character vector with your mature or precursor miRBase miRNA accessions. Note that
|
mirna_type |
Type of your supplied miRNA accession. either "mature" or "precursor". |
test_type |
The analysis to perform. can be either "ORA" for 'Over Representation Analysis' or "GSEA" for miRNA (Gene) 'Set Enrichment Analysis'. Note that in GSEA, your list should be sorted beforehand based on some criterion. |
species |
Fully or partially matching Scientific name, abbreviation or NCBI taxon ID of one of the following species:
|
categories |
one or multiple Category names to be used for miRNA set enrichment analysis. Note that
|
p_adj_method |
P-value adjustment method to be used. Should be one of: "none", "fdr" (default), "bonferroni", "BY", "hochberg", "holm" or "hommel" |
independent_p_adj |
(logical) The scope and level of p-value adjustment; if TRUE (default), the categories will be considered independent from each other and the p-value will be adjusted separately for each category. if FALSE, the p-value will be adjusted collectively over all categories. |
sig_level |
(numeric) The significance threshold of adjusted P-value. values equal to or greater than this threshold will be dropped from the results. |
min_hits |
(numeric) How many miRNA should a sub-category have from your supplied test-list to be included in the results? (default is 2) |
ref_set |
(Optional) Only applicable when test_type is "ORA". This character vector will be used as your reference (background or universe) set for p-value calculations. |
sort_by |
A column name to the result's table based on that. one of: "category", "subcategory", "enrichment", "p_value", "p_adjusted" (default), "q_value" or "observed" . |
sort_asc |
(logical) If TRUE, the results will be sorted in ascending order. If FALSE, the results will be sorted in descending order. |
... |
rbioapi option(s). See |
This function will call other rba_mieaa_*** functions with the following order:
Call rba_mieaa_enrich_submit
to Submit an enrichment
analysis request to miEAA servers, using your supplied miRNA lists and
other arguments.
Once your job was successfully submitted, it will call
rba_mieaa_enrich_status
every 5 seconds, to check the
status of your running server-side job and whether your analysis job is
finished and the results are available.
Call rba_mieaa_enrich_results
to retrieve the results
of your enrichment analysis.
See each function's manual for more details.
A data frame with your enrichment analysis results.
"GET https://ccb-compute2.cs.uni-saarland.de/mieaa2/api/"
Fabian Kern, Tobias Fehlmann, Jeffrey Solomon, Louisa Schwed, Nadja Grammes, Christina Backes, Kendall Van Keuren-Jensen, David Wesley Craig,Eckart Meese, Andreas Keller, miEAA 2.0: integrating multi-species microRNA enrichment analysis and workflow management systems, Nucleic Acids Research, Volume 48, Issue W1, 02 July 2020, Pages W521–W528, https://doi.org/10.1093/nar/gkaa309
Other "miEAA":
rba_mieaa_cats()
,
rba_mieaa_convert_type()
,
rba_mieaa_convert_version()
,
rba_mieaa_enrich_results()
,
rba_mieaa_enrich_status()
,
rba_mieaa_enrich_submit()
Other "Enrichment/Over-representation":
rba_enrichr()
,
rba_panther_enrich()
,
rba_reactome_analysis()
,
rba_string_enrichment()
,
rba_string_enrichment_image()
## Not run: rba_mieaa_enrich(test_set = c("hsa-miR-20b-5p", "hsa-miR-144-5p", "hsa-miR-17-5p", "hsa-miR-20a-5p"), mirna_type = "mature", test_type = "ORA", species = 9606, categories = "miRPathDB_GO_Biological_process_mature") ## End(Not run)
## Not run: rba_mieaa_enrich(test_set = c("hsa-miR-20b-5p", "hsa-miR-144-5p", "hsa-miR-17-5p", "hsa-miR-20a-5p"), mirna_type = "mature", test_type = "ORA", species = 9606, categories = "miRPathDB_GO_Biological_process_mature") ## End(Not run)
After your submitted enrichment analysis request has finished (check
using rba_mieaa_enrich_status
), you can retrieve the results
using this function.
rba_mieaa_enrich_results(job_id, sort_by = "p_adjusted", sort_asc = TRUE, ...)
rba_mieaa_enrich_results(job_id, sort_by = "p_adjusted", sort_asc = TRUE, ...)
job_id |
The job-id (a character string) of a submitted enrichment analysis. |
sort_by |
A column name to the result's table based on that. one of: "category", "subcategory", "enrichment", "p_value", "p_adjusted" (default), "q_value" or "observed" . |
sort_asc |
(logical) If TRUE, the results will be sorted in ascending order. If FALSE, the results will be sorted in descending order. |
... |
rbioapi option(s). See |
Note that using rba_mieaa_enrich
is a more convenient way to
automatically perform this and other required function calls to
perform enrichment analysis on your input miRNA-set using miEAA.
A data frame with your enrichment analysis results.
"GET https://ccb-compute2.cs.uni-saarland.de/mieaa2/api/v1/results/{job_id}"
Fabian Kern, Tobias Fehlmann, Jeffrey Solomon, Louisa Schwed, Nadja Grammes, Christina Backes, Kendall Van Keuren-Jensen, David Wesley Craig,Eckart Meese, Andreas Keller, miEAA 2.0: integrating multi-species microRNA enrichment analysis and workflow management systems, Nucleic Acids Research, Volume 48, Issue W1, 02 July 2020, Pages W521–W528, https://doi.org/10.1093/nar/gkaa309
Other "miEAA":
rba_mieaa_cats()
,
rba_mieaa_convert_type()
,
rba_mieaa_convert_version()
,
rba_mieaa_enrich()
,
rba_mieaa_enrich_status()
,
rba_mieaa_enrich_submit()
## Not run: rba_mieaa_enrich_results("f52d1aef-6d3d-4d51-9020-82e68fe99012") ## End(Not run)
## Not run: rba_mieaa_enrich_results("f52d1aef-6d3d-4d51-9020-82e68fe99012") ## End(Not run)
After you have submitted your enrichment analysis (using
rba_mieaa_enrich_submit
) and retrieved a job-id,
you can use this function to check the status of your job. Status value
equal to 100 means that your requested analysis has finished and you may
retrieve the results using rba_mieaa_enrich_results
.
rba_mieaa_enrich_status(job_id, ...)
rba_mieaa_enrich_status(job_id, ...)
job_id |
The job-id (a character string) of a submitted enrichment analysis. |
... |
rbioapi option(s). See |
Note that using rba_mieaa_enrich
is a more convenient way to
automatically perform this and other required function calls to
perform enrichment analysis on your input miRNA-set using miEAA.
A list containing the status value for a analysis that corresponds to your supplied job-id.
"GET https://ccb-compute2.cs.uni-saarland.de/mieaa2/api/v1/job_status/{job_id}"
Fabian Kern, Tobias Fehlmann, Jeffrey Solomon, Louisa Schwed, Nadja Grammes, Christina Backes, Kendall Van Keuren-Jensen, David Wesley Craig,Eckart Meese, Andreas Keller, miEAA 2.0: integrating multi-species microRNA enrichment analysis and workflow management systems, Nucleic Acids Research, Volume 48, Issue W1, 02 July 2020, Pages W521–W528, https://doi.org/10.1093/nar/gkaa309
Other "miEAA":
rba_mieaa_cats()
,
rba_mieaa_convert_type()
,
rba_mieaa_convert_version()
,
rba_mieaa_enrich()
,
rba_mieaa_enrich_results()
,
rba_mieaa_enrich_submit()
## Not run: Sys.sleep(1) # to prevent 429 error during R CMD check rba_mieaa_enrich_status("f52d1aef-6d3d-4d51-9020-82e68fe99012") ## End(Not run)
## Not run: Sys.sleep(1) # to prevent 429 error during R CMD check rba_mieaa_enrich_status("f52d1aef-6d3d-4d51-9020-82e68fe99012") ## End(Not run)
Using This function you can submit a request in miEAA servers to perform Over-representation or GSEA Analysis for a given set of miRNA identifiers. see "arguments" section for more information.
rba_mieaa_enrich_submit( test_set, mirna_type, test_type, species = "hsa", categories = NULL, p_adj_method = "fdr", independent_p_adj = TRUE, sig_level = 0.05, min_hits = 2, ref_set = NULL, ... )
rba_mieaa_enrich_submit( test_set, mirna_type, test_type, species = "hsa", categories = NULL, p_adj_method = "fdr", independent_p_adj = TRUE, sig_level = 0.05, min_hits = 2, ref_set = NULL, ... )
test_set |
a character vector with your mature or precursor miRBase miRNA accessions. Note that
|
mirna_type |
Type of your supplied miRNA accession. either "mature" or "precursor". |
test_type |
The analysis to perform. can be either "ORA" for 'Over Representation Analysis' or "GSEA" for miRNA (Gene) 'Set Enrichment Analysis'. Note that in GSEA, your list should be sorted beforehand based on some criterion. |
species |
Fully or partially matching Scientific name, abbreviation or NCBI taxon ID of one of the following species:
|
categories |
one or multiple Category names to be used for miRNA set enrichment analysis. Note that
|
p_adj_method |
P-value adjustment method to be used. Should be one of: "none", "fdr" (default), "bonferroni", "BY", "hochberg", "holm" or "hommel" |
independent_p_adj |
(logical) The scope and level of p-value adjustment; if TRUE (default), the categories will be considered independent from each other and the p-value will be adjusted separately for each category. if FALSE, the p-value will be adjusted collectively over all categories. |
sig_level |
(numeric) The significance threshold of adjusted P-value. values equal to or greater than this threshold will be dropped from the results. |
min_hits |
(numeric) How many miRNA should a sub-category have from your supplied test-list to be included in the results? (default is 2) |
ref_set |
(Optional) Only applicable when test_type is "ORA". This character vector will be used as your reference (background or universe) set for p-value calculations. |
... |
rbioapi option(s). See |
Note that using rba_mieaa_enrich
is a more convenient way to
automatically perform this and other required function calls to
perform enrichment analysis on your input miRNA-set using miEAA.
A list that contains your submitted job's ID and a URL to manually check for your job status.
"POST https://ccb-compute2.cs.uni-saarland.de/mieaa2/api/v1/enrichment_analysis/{species}/{type}/{test}/"
Fabian Kern, Tobias Fehlmann, Jeffrey Solomon, Louisa Schwed, Nadja Grammes, Christina Backes, Kendall Van Keuren-Jensen, David Wesley Craig,Eckart Meese, Andreas Keller, miEAA 2.0: integrating multi-species microRNA enrichment analysis and workflow management systems, Nucleic Acids Research, Volume 48, Issue W1, 02 July 2020, Pages W521–W528, https://doi.org/10.1093/nar/gkaa309
Other "miEAA":
rba_mieaa_cats()
,
rba_mieaa_convert_type()
,
rba_mieaa_convert_version()
,
rba_mieaa_enrich()
,
rba_mieaa_enrich_results()
,
rba_mieaa_enrich_status()
Sys.sleep(1) # to prevent 429 error during R CMD check rba_mieaa_enrich_submit(test_set = c("hsa-miR-20b-5p", "hsa-miR-144-5p"), mirna_type = "mature", test_type = "GSEA", species = 9606, categories = NULL)
Sys.sleep(1) # to prevent 429 error during R CMD check rba_mieaa_enrich_submit(test_set = c("hsa-miR-20b-5p", "hsa-miR-144-5p"), mirna_type = "mature", test_type = "GSEA", species = 9606, categories = NULL)
A safe way to change rbioapi's global options and behavior. see "arguments"
section for available options.
Note that you are not limited to changing the options globally, you can
include the option names and values in the '...' argument of any rbioapi
function to alter the option(s) only in that function call;
e.g. example_function(x, diagnostics = TRUE, timeout = 300).
Alternatively, you can call this function with no arguments, i.e.
rba_options(), to retrieve a data frame of available rbioapi options and
their current values.
rba_options( diagnostics = NULL, dir_name = NULL, retry_max = NULL, retry_wait = NULL, progress = NULL, save_file = NULL, skip_error = NULL, timeout = NULL, verbose = NULL )
rba_options( diagnostics = NULL, dir_name = NULL, retry_max = NULL, retry_wait = NULL, progress = NULL, save_file = NULL, skip_error = NULL, timeout = NULL, verbose = NULL )
diagnostics |
(Logical) (default = FALSE) Show diagnostics and detailed messages with internal information. |
dir_name |
(character) (default = "rbioapi") If the package needs to generate a file path to save the server's response, a directory with this name will be created in your working directory to save your files. |
retry_max |
(Numeric) (default = 0) How many times should rbioapi retry in case of 5xx server responses, errors related to the server or no internet connectivity? |
retry_wait |
(Numeric) (default = 10) Time in seconds to wait before next retry in case of internet connection or server problems. |
progress |
(Logical) (default = FALSE) Should a progress bar be displayed? |
save_file |
(Logical or character) (default = FALSE) Either:
|
skip_error |
(Logical) (default = FALSE if R is in the interactive mode, TRUE otherwise) If TRUE, the code execution will not be stopped in case of errors (anything but HTTP status 200 from the server); Instead the error message will be returned as the function's output. However, if FALSE, in case of any error, the code execution will be halted and an error message will be issued. |
timeout |
(Numeric) (default = 90) The maximum time in seconds that you are willing to wait for a server response before giving up and stopping the function execution. |
verbose |
(Logical) (Default = TRUE) Generate short informative messages. |
Because this function validates your supplied changes, please only change rbioapi options using this function and avoid directly editing them.
If called without any argument, a Data frame with available options and their information; If Called with an argument, will Return NULL but Alters that option globally.
Other "Helper functions":
rba_connection_test()
,
rba_pages()
rba_options() ## Not run: rba_options(verbose = FALSE) ## End(Not run) ## Not run: rba_options(save_file = TRUE) ## End(Not run) ## Not run: rba_options(diagnostics = TRUE, progress = TRUE) ## End(Not run)
rba_options() ## Not run: rba_options(verbose = FALSE) ## End(Not run) ## Not run: rba_options(save_file = TRUE) ## End(Not run) ## Not run: rba_options(diagnostics = TRUE, progress = TRUE) ## End(Not run)
Some resources return paginated results, meaning that you have to make separate calls for each page. Using this function, you can iterate over up to 100 pages. Just supply your rbioapi function and change to page argument to "pages:start_page:end_page", for example "pages:1:5".
rba_pages(input_call, ...)
rba_pages(input_call, ...)
input_call |
A quoted call. supply a regular rbioapi function call, but with two differences:
See the "examples" section to learn more. |
... |
Experimental internal options. |
To prevent flooding the server, there will be a 1 second delay between calls, also the user cannot iterate on more than 100 pages. The function will also override skip_error option and will always set it to TRUE. This means that in case of server response error (e.g. requesting pages that do not exist) an error message be returned to you instead of halting function's execution.
A named list where each element corresponds to a request's page.
Other "Helper functions":
rba_connection_test()
,
rba_options()
rba_pages(input_call = quote(rba_uniprot_taxonomy(ids = 189831, hierarchy = "siblings", page_size = 50, page_number = "pages:1:5"))) rba_pages(input_call = quote(rba_uniprot_taxonomy_name(name = "adenovirus", field = "scientific", search_type = "contain", page_size = 200, page_number = "pages:1:5", verbose = FALSE))) rba_pages(input_call = quote(rba_panther_info(what = "families", families_page = "pages:9:11")))
rba_pages(input_call = quote(rba_uniprot_taxonomy(ids = 189831, hierarchy = "siblings", page_size = 50, page_number = "pages:1:5"))) rba_pages(input_call = quote(rba_uniprot_taxonomy_name(name = "adenovirus", field = "scientific", search_type = "contain", page_size = 200, page_number = "pages:1:5", verbose = FALSE))) rba_pages(input_call = quote(rba_panther_info(what = "families", families_page = "pages:9:11")))
Use PANTHER services to perform over-representation enrichment analysis.
You can either provide a character vector of gene IDs for
over-representation analysis, or a data frame of gene IDs and expression
analysis.
Please refer to the details section for more information on
the statistical analysis.
rba_panther_enrich( genes, organism, annot_dataset, test_type = NULL, correction = "FDR", cutoff = NULL, ref_genes = NULL, ref_organism = NULL, ... )
rba_panther_enrich( genes, organism, annot_dataset, test_type = NULL, correction = "FDR", cutoff = NULL, ref_genes = NULL, ref_organism = NULL, ... )
genes |
Either a character vector or a data frame. Depending on this parameter, the analysis type is determined.
In both cases, maximum of 10000 genes can be supplied. The gene identifiers can be any of: Ensemble gene ID, Ensembl protein ID, Ensembl transcript ID, Entrez gene ID, gene symbol, NCBI GI, HGNC ID, International protein index ID, NCBI UniGene ID, UniProt accession or UniProt ID. |
organism |
(numeric) NCBI taxon ID. run |
annot_dataset |
A PANTHER dataset ID to test your input against it.
run |
test_type |
statistical test type to calculate the p values.
|
correction |
p value correction method. either "FDR" (default), "BONFERRONI" or "NONE". |
cutoff |
(Numeric) (Optional) a threshold to filter the results. if correction is "FDR", the threshold will be applied to fdr column's values; if otherwise, the threshold will be applied to p value column. |
ref_genes |
(Optional, only valid if genes is a character vector) A character vector of genes that will be used as the test's background (reference/universe) gene set. If no value supplied, all of the genes in specified organism will be used. The maximum length and supported IDs are the same as 'genes' argument. |
ref_organism |
(Optional, only valid if genes is a character vector) if 'ref_genes' is used, you can specify the organisms which correspond to your supplied IDs in 'ref_genes' argument. see 'organism' argument for supported values. |
... |
rbioapi option(s). See |
Over-representation Test: It assesses whether specific gene sets are represented in your input gene list differently from what is expected by chance. It uses Fisher's exact test or Binomial test to calculate p-values. Fisher's exact test determines the probability of observing the gene counts in a category based on a hypergeometric distribution; the binomial test compares the observed proportion of genes in a category to the expected proportion based on the reference list. A significant p-value indicates over-representation or under-representation of a gene set.
Statistical Enrichment Test: The statistical enrichment test uses the Mann-Whitney U (Wilcoxon Rank-Sum) test to assess if the expression values associated with genes in a specific category differ significantly from the overall distribution in the input list. This non-parametric test first ranks the numerical values and computes whether the expression values were randomly drawn from the overall distribution of values. A small p-value indicates that the numerical values for the genes in the category are significantly different from the background distribution, thus non-random patterns.
Please note that starting from rbioapi version 0.8.2, you can supply a gene expression data frame to perform statistical enrichment analysis. In earlier versions, only a character vector of gene IDs was possible, thus only over-representation analysis.
A list with the parameters and results. If the analysis was successful, the results data frame are returned in the "results" element within the list. Otherwise, an error message will be returned under the "search$error" element in the returned list.
"POST https://www.pantherdb.org/services/oai/pantherdb/enrich/overrep"
"POST https://www.pantherdb.org/services/oai/pantherdb/enrich/statenrich"
Huaiyu Mi, Dustin Ebert, Anushya Muruganujan, Caitlin Mills, Laurent-Philippe Albou, Tremayne Mushayamaha, Paul D Thomas, PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API, Nucleic Acids Research, Volume 49, Issue D1, 8 January 2021, Pages D394–D403, https://doi.org/10.1093/nar/gkaa1106
Other "PANTHER":
rba_panther_family()
,
rba_panther_homolog()
,
rba_panther_info()
,
rba_panther_mapping()
,
rba_panther_ortholog()
,
rba_panther_tree_grafter()
Other "Enrichment/Over-representation":
rba_enrichr()
,
rba_mieaa_enrich()
,
rba_reactome_analysis()
,
rba_string_enrichment()
,
rba_string_enrichment_image()
rba_panther_enrich( genes = c("p53", "BRCA1", "cdk2", "Q99835", "CDC42", "CDK1", "KIF23", "PLK1", "RAC2", "RACGAP1"), organism = 9606, annot_dataset = "GO:0008150", cutoff = 0.01 ) expression_df <- data.frame( genes = c("p53", "BRCA1", "cdk2", "Q99835", "CDC42", "CDK1", "KIF23", "PLK1", "RAC2", "RACGAP1"), expr = runif(10, 0, 100) ) rba_panther_enrich( genes = expression_df, organism = 9606, annot_dataset = "GO:0008150" )
rba_panther_enrich( genes = c("p53", "BRCA1", "cdk2", "Q99835", "CDC42", "CDK1", "KIF23", "PLK1", "RAC2", "RACGAP1"), organism = 9606, annot_dataset = "GO:0008150", cutoff = 0.01 ) expression_df <- data.frame( genes = c("p53", "BRCA1", "cdk2", "Q99835", "CDC42", "CDK1", "KIF23", "PLK1", "RAC2", "RACGAP1"), expr = runif(10, 0, 100) ) rba_panther_enrich( genes = expression_df, organism = 9606, annot_dataset = "GO:0008150" )
Using this function, you can retrieve Orthologs, MSA or Tree topology information of a given PANTHER family.
rba_panther_family(id, what, target_organisms = NULL, ...)
rba_panther_family(id, what, target_organisms = NULL, ...)
id |
Panther family id. |
what |
What to retrieve? One of:
|
target_organisms |
(numeric) NCBI taxon ID(s) to filter the results.
run |
... |
rbioapi option(s). See |
For trees a list and otherwise a data frame with the requested family's information.
"GET https://www.pantherdb.org/services/oai/pantherdb/familyortholog"
"GET https://www.pantherdb.org/services/oai/pantherdb/familymsa"
"GET https://www.pantherdb.org/services/oai/pantherdb/treeinfo"
Huaiyu Mi, Dustin Ebert, Anushya Muruganujan, Caitlin Mills, Laurent-Philippe Albou, Tremayne Mushayamaha, Paul D Thomas, PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API, Nucleic Acids Research, Volume 49, Issue D1, 8 January 2021, Pages D394–D403, https://doi.org/10.1093/nar/gkaa1106
Other "PANTHER":
rba_panther_enrich()
,
rba_panther_homolog()
,
rba_panther_info()
,
rba_panther_mapping()
,
rba_panther_ortholog()
,
rba_panther_tree_grafter()
rba_panther_family("PTHR10000", what = "ortholog")
rba_panther_family("PTHR10000", what = "ortholog")
Using this function you can search and retrieve homolog of given gene(s).
rba_panther_homolog(genes, organism, type = "P", target_organisms = NULL, ...)
rba_panther_homolog(genes, organism, type = "P", target_organisms = NULL, ...)
genes |
Character vector of genes identifiers with maximum length of 10 or only one if seq_pos is supplied. Can be any of: Ensemble gene ID, Ensemble protein ID, Ensemble transcript ID, Entrez gene ID, gene symbol, NCBI GI, HGNC ID, International protein index ID, NCBI UniGene ID, UniProt accession and/or UniProt ID. |
organism |
(numeric) NCBI taxon ID of the organism of your supplied
genes. run |
type |
Homolog types to return. either "P" (default) for paralogs, "X" for horizontal gene transfer and "LDX" for diverged horizontal gene transfer. |
target_organisms |
(numeric) NCBI taxon ID(s) to filter the results.
run |
... |
rbioapi option(s). See |
A dataframe with homologs information.
"GET https://www.pantherdb.org/services/oai/pantherdb/ortholog/homologOther"
Huaiyu Mi, Dustin Ebert, Anushya Muruganujan, Caitlin Mills, Laurent-Philippe Albou, Tremayne Mushayamaha, Paul D Thomas, PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API, Nucleic Acids Research, Volume 49, Issue D1, 8 January 2021, Pages D394–D403, https://doi.org/10.1093/nar/gkaa1106
Other "PANTHER":
rba_panther_enrich()
,
rba_panther_family()
,
rba_panther_info()
,
rba_panther_mapping()
,
rba_panther_ortholog()
,
rba_panther_tree_grafter()
rba_panther_homolog("OR4F5", organism = 9606, type = "P")
rba_panther_homolog("OR4F5", organism = 9606, type = "P")
Using this function you can retrieve a list of available organisms, annotation datasets, families, and pathways which are supported in PANTHER.
rba_panther_info(what, organism_chr_loc = FALSE, families_page = 1, ...)
rba_panther_info(what, organism_chr_loc = FALSE, families_page = 1, ...)
what |
what information to retrieve? should be one of:
|
organism_chr_loc |
(Logical) (only when 'what = "organisms"') If TRUE, only organisms with chromosome location will be returned. If FALSE (default) every organisms will be returned. |
families_page |
(Numeric) (only when 'what = "families"') Family information is very long, so results are paginated. Use this argument to define the page to retrieve. |
... |
rbioapi option(s). See |
For families and species tree, a list and otherwise a data frame with pertinent information.
"GET https://www.pantherdb.org/services/oai/pantherdb/supportedgenomes"
"GET https://www.pantherdb.org/services/oai/pantherdb/supportedannotdatasets"
"GET https://www.pantherdb.org/services/oai/pantherdb/supportedpantherfamilies"
"GET https://www.pantherdb.org/services/oai/pantherdb/supportedpantherpathways"
"GET https://www.pantherdb.org/services/oai/pantherdb/speciestree"
Huaiyu Mi, Dustin Ebert, Anushya Muruganujan, Caitlin Mills, Laurent-Philippe Albou, Tremayne Mushayamaha, Paul D Thomas, PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API, Nucleic Acids Research, Volume 49, Issue D1, 8 January 2021, Pages D394–D403, https://doi.org/10.1093/nar/gkaa1106
Other "PANTHER":
rba_panther_enrich()
,
rba_panther_family()
,
rba_panther_homolog()
,
rba_panther_mapping()
,
rba_panther_ortholog()
,
rba_panther_tree_grafter()
rba_panther_info(what = "organisms") rba_panther_info(what = "families", families_page = 4)
rba_panther_info(what = "organisms") rba_panther_info(what = "families", families_page = 4)
Using this function, you can search your genes in PANTHER database and retrieve attributes and annotations associated to your genes.
rba_panther_mapping(genes, organism, ...)
rba_panther_mapping(genes, organism, ...)
genes |
Character vector of genes identifiers with maximum length of 1000. Can be any of: Ensemble gene ID, Ensemble protein ID, Ensemble transcript ID, Entrez gene ID, gene symbol, NCBI GI, HGNC ID, International protein index ID, NCBI UniGene ID, UniProt accession and/or UniProt ID. |
organism |
(numeric) NCBI taxon ID. run |
... |
rbioapi option(s). See |
A list containing your unmapped inputs and mapped genes with pertinent information.
"GET https://www.pantherdb.org/services/oai/pantherdb/geneinfo"
Huaiyu Mi, Dustin Ebert, Anushya Muruganujan, Caitlin Mills, Laurent-Philippe Albou, Tremayne Mushayamaha, Paul D Thomas, PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API, Nucleic Acids Research, Volume 49, Issue D1, 8 January 2021, Pages D394–D403, https://doi.org/10.1093/nar/gkaa1106
Other "PANTHER":
rba_panther_enrich()
,
rba_panther_family()
,
rba_panther_homolog()
,
rba_panther_info()
,
rba_panther_ortholog()
,
rba_panther_tree_grafter()
rba_panther_mapping(genes = c("Cd40", 7124, "ENSG00000203747", "P33681"), organism = 9606)
rba_panther_mapping(genes = c("Cd40", 7124, "ENSG00000203747", "P33681"), organism = 9606)
Using this function you can search and retrieve orthologs of given gene(s), and optionally return the corresponding position in the target organisms' protein sequences.
rba_panther_ortholog( genes, organism, type = "all", target_organisms = NULL, seq_pos = NULL, include_msa = NULL, ... )
rba_panther_ortholog( genes, organism, type = "all", target_organisms = NULL, seq_pos = NULL, include_msa = NULL, ... )
genes |
Character vector of genes identifiers with maximum length of 10 or only one if seq_pos is supplied. Can be any of: Ensemble gene ID, Ensemble protein ID, Ensemble transcript ID, Entrez gene ID, gene symbol, NCBI GI, HGNC ID, International protein index ID, NCBI UniGene ID, UniProt accession and/or UniProt ID. |
organism |
(numeric) NCBI taxon ID of the organism of your supplied
genes. run |
type |
Ortholog types to return. either "all" (default) or "LDO" to only return least diverged orthologs. |
target_organisms |
(numeric) NCBI taxon ID(s) to filter the results.
run |
seq_pos |
(Numeric) A position in the protein's sequence of the supplied gene. should be in the range of the protein's length. |
include_msa |
(Logical) Only if a sequence position is supplied, should MSA (Multiple Sequence Alignment) information be included in the results? |
... |
rbioapi option(s). See |
A data frame with Orthologs information.
"POST https://www.pantherdb.org/services/oai/pantherdb/ortholog/matchortho"
"POST https://www.pantherdb.org/services/oai/pantherdb/ortholog/homologpos"
Huaiyu Mi, Dustin Ebert, Anushya Muruganujan, Caitlin Mills, Laurent-Philippe Albou, Tremayne Mushayamaha, Paul D Thomas, PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API, Nucleic Acids Research, Volume 49, Issue D1, 8 January 2021, Pages D394–D403, https://doi.org/10.1093/nar/gkaa1106
Other "PANTHER":
rba_panther_enrich()
,
rba_panther_family()
,
rba_panther_homolog()
,
rba_panther_info()
,
rba_panther_mapping()
,
rba_panther_tree_grafter()
rba_panther_ortholog("CD40", organism = 9606, type = "LDO")
rba_panther_ortholog("CD40", organism = 9606, type = "LDO")
Use this function to retrieve a PANTHER family's tree topology information with a node corresponding to your sequence grafted in the best location in that tree.
rba_panther_tree_grafter(protein_seq, target_organisms = NULL, ...)
rba_panther_tree_grafter(protein_seq, target_organisms = NULL, ...)
protein_seq |
A character string with the protein's sequence. Maximum allowed sequence length is 50kb. |
target_organisms |
(numeric) NCBI taxon ID(s) to filter the results.
run |
... |
rbioapi option(s). See |
For more information, see: Haiming Tang, Robert D Finn, Paul D Thomas, TreeGrafter: phylogenetic tree-based annotation of proteins with Gene Ontology terms and other annotations, Bioinformatics, Volume 35, Issue 3, February 2019, Pages 518–520, doi:10.1093/bioinformatics/bty625
A list containing PANTHER tree topology information.
"GET https://www.pantherdb.org/services/oai/pantherdb/graftsequence"
Huaiyu Mi, Dustin Ebert, Anushya Muruganujan, Caitlin Mills, Laurent-Philippe Albou, Tremayne Mushayamaha, Paul D Thomas, PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API, Nucleic Acids Research, Volume 49, Issue D1, 8 January 2021, Pages D394–D403, https://doi.org/10.1093/nar/gkaa1106
Other "PANTHER":
rba_panther_enrich()
,
rba_panther_family()
,
rba_panther_homolog()
,
rba_panther_info()
,
rba_panther_mapping()
,
rba_panther_ortholog()
rba_panther_tree_grafter("MKVLWAALLVTFLAGCQAKVEQAVETE")
rba_panther_tree_grafter("MKVLWAALLVTFLAGCQAKVEQAVETE")
Using this function, you can perform Reactome Analysis In a convenient way. The Analysis Type will be chosen depending on your supplied input:
If you supply a vector or a single-columned table, "Over-Representation" analysis will be performed.
If you supply a multi-column table, with the first column being molecules identifiers and the rest being numeral expression values, "Expression" analysis will be performed.
See the details section for the accepted input types and format.
rba_reactome_analysis( input, input_format = NULL, projection = TRUE, interactors = FALSE, species = NULL, sort_by = "ENTITIES_PVALUE", order = "ASC", resource = "TOTAL", p_value = 1, include_disease = TRUE, min = NULL, max = NULL, ... )
rba_reactome_analysis( input, input_format = NULL, projection = TRUE, interactors = FALSE, species = NULL, sort_by = "ENTITIES_PVALUE", order = "ASC", resource = "TOTAL", p_value = 1, include_disease = TRUE, min = NULL, max = NULL, ... )
input |
A vector, data frame, matrix or a local file path or URL that points to your data. See "Details section" for more information of how to organize and supply your input. |
input_format |
(Optional) This function will automatically identify your supplied input's format. But in case of unexpected issues or if you want to be explicit, set this argument to one of:
|
projection |
Logical (default = TRUE) Should non-human identifiers be projected to their human equivalents? (using Reactome orthology data) |
interactors |
Logical (default = FALSE) Should IntAct interaction data be used to increase the analysis background? |
species |
Numeric or Character: NCBI Taxonomy identifier (Human
is 9606), species name (e.g. "Homo sapiens") or Reactome DbId (e.g
Homo sapiens is 48887). See
|
sort_by |
Sort the result based on what column? available choices are: "NAME", "TOTAL_ENTITIES", "TOTAL_INTERACTORS", "TOTAL_REACTIONS", "FOUND_ENTITIES", "FOUND_INTERACTORS", "FOUND_REACTIONS", "ENTITIES_RATIO", "ENTITIES_PVALUE", "ENTITIES_FDR" or "REACTIONS_RATIO" |
order |
Sort Order. Can be either "ASC" (default) or "DESC". |
resource |
Filter results based on the resource. Default is "TOTAL", available choices are: "TOTAL", "UNIPROT", "ENSEMBL", "CHEBI", "IUPHAR", "MIRBASE", "NCBI_PROTEIN", "EMBL", "COMPOUND", "ENTITIES_FDR" or "PUBCHEM_COMPOUND". |
p_value |
Set a P value threshold. Only results with P value equal to or less than your supplied threshold will be returned. (default = 1, Meaning no P value filtering) |
include_disease |
Logical (default = TRUE) Should the disease pathways be included in the results? |
min |
(numeric) Minimum number of entities that a pathways should have to be included in the results. |
max |
(numeric) Maximum number of entities that a pathways should have to be included in the results. |
... |
rbioapi option(s). See |
You can supply your table or vector input in numerous formats:
A R object which can be data frame, matrix or a simple vector.
A path to a local text file in your device that contains the molecules data. (The file should be formatted correctly, see below.)
A URL pointing to a text file on the web that contains the molecules data. (The file should be formatted correctly, see below.
If you supply a text file (as a local file path or URL), it should be
in TSV (Tab-Separated Values) format; Column names should start with "#"
character. Note that if you are providing the file for
"Over-Representation" analysis (i.e. Single columned-data) this header
line is optional and will be used as your 'Sample Name', otherwise it is
required.
Also, form the "summary" element in the function's output, you can see
how Reactome Interpreted your input and subsequently the type of analysis
that has been performed.
There is no strict criteria about the type of your molecules Identifiers,
Reactome will Map the IDs to it's internal database entities.
Nevertheless, You can check if all your identifiers has been found in
"identifiersNotFound" element in the function's output.
After Any Analysis, Reactome will associate a token to your analysis.
It can be later used to in function that requires the token (e.g to retrieve
the analysis results, download pdf).
Note that Reactome will store your token for only 7 days. You can
download your full results with
rba_reactome_analysis_download
, and re-import it anytime to
reactome (using rba_reactome_analysis_import
) to generate
a new token.
List containing the results and information of your analysis. Note that you can use the token returned in the "summary" sub-list of the results (i.e. results$summary$token) to retrieve your results later or in other Reactome analysis functions.
"POST https://reactome.org/AnalysisService/identifiers/form"
"POST https://reactome.org/AnalysisService/identifiers/url"
"POST https://reactome.org/AnalysisService/identifiers/form/projection"
"POST https://reactome.org/AnalysisService/identifiers/url/projection"
Marc Gillespie, Bijay Jassal, Ralf Stephan, Marija Milacic, Karen Rothfels, Andrea Senff-Ribeiro, Johannes Griss, Cristoffer Sevilla, Lisa Matthews, Chuqiao Gong, Chuan Deng, Thawfeek Varusai, Eliot Ragueneau, Yusra Haider, Bruce May, Veronica Shamovsky, Joel Weiser, Timothy Brunson, Nasim Sanati, Liam Beckman, Xiang Shao, Antonio Fabregat, Konstantinos Sidiropoulos, Julieth Murillo, Guilherme Viteri, Justin Cook, Solomon Shorser, Gary Bader, Emek Demir, Chris Sander, Robin Haw, Guanming Wu, Lincoln Stein, Henning Hermjakob, Peter D’Eustachio, The reactome pathway knowledgebase 2022, Nucleic Acids Research, 2021;, kab1028, https://doi.org/10.1093/nar/gkab1028
Griss J, Viteri G, Sidiropoulos K, Nguyen V, Fabregat A, Hermjakob H. ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis. Mol Cell Proteomics. 2020 Sep 9. doi: 10.1074/mcp. PubMed PMID: 32907876.
Other "Reactome Analysis Service":
rba_reactome_analysis_download()
,
rba_reactome_analysis_import()
,
rba_reactome_analysis_mapping()
,
rba_reactome_analysis_pdf()
,
rba_reactome_analysis_species()
,
rba_reactome_analysis_token()
Other "Enrichment/Over-representation":
rba_enrichr()
,
rba_mieaa_enrich()
,
rba_panther_enrich()
,
rba_string_enrichment()
,
rba_string_enrichment_image()
## Not run: rba_reactome_analysis(input = c("p53", "BRCA1", "cdk2", "Q99835", "CDC42")) ## End(Not run) ## Not run: rba_reactome_analysis(input = "c:/rbioapi/genes.txt") ## End(Not run) ## Not run: rba_reactome_analysis(input = "https://qazwsx.com/genes.txt") ## End(Not run)
## Not run: rba_reactome_analysis(input = c("p53", "BRCA1", "cdk2", "Q99835", "CDC42")) ## End(Not run) ## Not run: rba_reactome_analysis(input = "c:/rbioapi/genes.txt") ## End(Not run) ## Not run: rba_reactome_analysis(input = "https://qazwsx.com/genes.txt") ## End(Not run)
Based on the "request" argument, you can download different analysis results data associated with a given token.
rba_reactome_analysis_download( token, request, save_to = NULL, resource = "TOTAL", ... )
rba_reactome_analysis_download( token, request, save_to = NULL, resource = "TOTAL", ... )
token |
A token associated to your previous Reactome analysis. |
request |
What to download? Should be one of:
|
save_to |
NULL or Character:
|
resource |
(Only when request is "found_ids" or "pathways") Filter results based on the resource. Default is "TOTAL", available choices are:"TOTAL", "UNIPROT", "ENSEMBL", "CHEBI", "IUPHAR", "MIRBASE", "NCBI_PROTEIN", "EMBL", "COMPOUND", "ENTITIES_FDR" or "PUBCHEM_COMPOUND". |
... |
rbioapi option(s). See |
Token is associated to each Reactome analysis results and kept by Reactome
for at least 7 days. You can locate it in
rba_reactome_analysis
's output, under a sub-list named
"summary" (i.e. results$summary$token).
Use rba_reactome_analysis_pdf
to save a full report
in PDF format.
NULL, a CSV,JSON or Gzipped JSON file will be saved to disk based on your input.
GET https://reactome.org/AnalysisService/download/{token}/entities/
found/{resource}/{filename}.csv"
GET https://reactome.org/AnalysisService/download/{token}/entities/
notfound/{filename}.csv"
GET https://reactome.org/AnalysisService/download/{token}/pathways/
{resource}/{filename}.csv"
GET https://reactome.org/AnalysisService/download/{token}/result.json"
GET https://reactome.org/AnalysisService/download/{token}/result.json.gz"
Marc Gillespie, Bijay Jassal, Ralf Stephan, Marija Milacic, Karen Rothfels, Andrea Senff-Ribeiro, Johannes Griss, Cristoffer Sevilla, Lisa Matthews, Chuqiao Gong, Chuan Deng, Thawfeek Varusai, Eliot Ragueneau, Yusra Haider, Bruce May, Veronica Shamovsky, Joel Weiser, Timothy Brunson, Nasim Sanati, Liam Beckman, Xiang Shao, Antonio Fabregat, Konstantinos Sidiropoulos, Julieth Murillo, Guilherme Viteri, Justin Cook, Solomon Shorser, Gary Bader, Emek Demir, Chris Sander, Robin Haw, Guanming Wu, Lincoln Stein, Henning Hermjakob, Peter D’Eustachio, The reactome pathway knowledgebase 2022, Nucleic Acids Research, 2021;, kab1028, https://doi.org/10.1093/nar/gkab1028
Griss J, Viteri G, Sidiropoulos K, Nguyen V, Fabregat A, Hermjakob H. ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis. Mol Cell Proteomics. 2020 Sep 9. doi: 10.1074/mcp. PubMed PMID: 32907876.
rba_reactome_analysis_pdf
rba_reactome_analysis
Other "Reactome Analysis Service":
rba_reactome_analysis()
,
rba_reactome_analysis_import()
,
rba_reactome_analysis_mapping()
,
rba_reactome_analysis_pdf()
,
rba_reactome_analysis_species()
,
rba_reactome_analysis_token()
## Not run: rba_reactome_analysis_download(token = "MjAyMDEwMTYwMTI3MTNfMjY1MjM", request = "pathways", save_to = "found_ids.csv") ## End(Not run) ## Not run: rba_reactome_analysis_download(token = "MjAyMDEwMTYwMTI3MTNfMjY1MjM", request = "found_ids", save_to = "found_ids.csv") ## End(Not run)
## Not run: rba_reactome_analysis_download(token = "MjAyMDEwMTYwMTI3MTNfMjY1MjM", request = "pathways", save_to = "found_ids.csv") ## End(Not run) ## Not run: rba_reactome_analysis_download(token = "MjAyMDEwMTYwMTI3MTNfMjY1MjM", request = "found_ids", save_to = "found_ids.csv") ## End(Not run)
If you have a JSON file of analysis results (only obtained via
rba_reactome_analysis_download
with the result argument
set to "results", or "results_gz"), you can import the results back to
Reactome and retrieve a token.
This is useful when you want to use other Reactome services which require
a token but you do not have a token or your token has been
expired (i.e. more than 7 days passed from your analysis).
rba_reactome_analysis_import(input, input_format = NULL, ...)
rba_reactome_analysis_import(input, input_format = NULL, ...)
input |
A local file path or URL that points to your -optionally gzipped- JSON file. |
input_format |
(Optional) This function will automatically identify your supplied input's format. But in case of unexpected issues or if you want to be explicit, set this argument to one of:
|
... |
rbioapi option(s). See |
A list containing the new token and other information of your imported results.
"GET https://reactome.org/AnalysisService/import/"
"GET https://reactome.org/AnalysisService/import/form"
"GET https://reactome.org/AnalysisService/import/url"
Marc Gillespie, Bijay Jassal, Ralf Stephan, Marija Milacic, Karen Rothfels, Andrea Senff-Ribeiro, Johannes Griss, Cristoffer Sevilla, Lisa Matthews, Chuqiao Gong, Chuan Deng, Thawfeek Varusai, Eliot Ragueneau, Yusra Haider, Bruce May, Veronica Shamovsky, Joel Weiser, Timothy Brunson, Nasim Sanati, Liam Beckman, Xiang Shao, Antonio Fabregat, Konstantinos Sidiropoulos, Julieth Murillo, Guilherme Viteri, Justin Cook, Solomon Shorser, Gary Bader, Emek Demir, Chris Sander, Robin Haw, Guanming Wu, Lincoln Stein, Henning Hermjakob, Peter D’Eustachio, The reactome pathway knowledgebase 2022, Nucleic Acids Research, 2021;, kab1028, https://doi.org/10.1093/nar/gkab1028
Griss J, Viteri G, Sidiropoulos K, Nguyen V, Fabregat A, Hermjakob H. ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis. Mol Cell Proteomics. 2020 Sep 9. doi: 10.1074/mcp. PubMed PMID: 32907876.
Other "Reactome Analysis Service":
rba_reactome_analysis()
,
rba_reactome_analysis_download()
,
rba_reactome_analysis_mapping()
,
rba_reactome_analysis_pdf()
,
rba_reactome_analysis_species()
,
rba_reactome_analysis_token()
## Not run: rba_reactome_analysis_import("c:/rbioapi/res.json") ## End(Not run) ## Not run: rba_reactome_analysis_import("https://qaz.com/res.json.gz") ## End(Not run)
## Not run: rba_reactome_analysis_import("c:/rbioapi/res.json") ## End(Not run) ## Not run: rba_reactome_analysis_import("https://qaz.com/res.json.gz") ## End(Not run)
Use this function to map molecule identifiers of different species to Reactome Identifiers.
rba_reactome_analysis_mapping( input, input_format = NULL, projection = TRUE, interactors = FALSE, ... )
rba_reactome_analysis_mapping( input, input_format = NULL, projection = TRUE, interactors = FALSE, ... )
input |
A vector, local file path or URL that points to your identifiers list. |
input_format |
(Optional) This function will automatically identify your supplied input's format. But in case of unexpected issues or if you want to be explicit, set this argument to one of:
|
projection |
Logical (default = TRUE) Should non-human identifiers be projected to their human equivalents? (using Reactome orthology data) |
interactors |
Logical (default = FALSE) Should IntAct interaction data be included? |
... |
rbioapi option(s). See |
List containing your identifiers and the IDS and resources they are mapped to.
"GET https://reactome.org/AnalysisService/mapping"
"GET https://reactome.org/AnalysisService/mapping/form"
"GET https://reactome.org/AnalysisService/mapping/form/projection"
"GET https://reactome.org/AnalysisService/mapping"
"GET https://reactome.org/AnalysisService/mapping/url"
"GET https://reactome.org/AnalysisService/mapping/url/projection"
Marc Gillespie, Bijay Jassal, Ralf Stephan, Marija Milacic, Karen Rothfels, Andrea Senff-Ribeiro, Johannes Griss, Cristoffer Sevilla, Lisa Matthews, Chuqiao Gong, Chuan Deng, Thawfeek Varusai, Eliot Ragueneau, Yusra Haider, Bruce May, Veronica Shamovsky, Joel Weiser, Timothy Brunson, Nasim Sanati, Liam Beckman, Xiang Shao, Antonio Fabregat, Konstantinos Sidiropoulos, Julieth Murillo, Guilherme Viteri, Justin Cook, Solomon Shorser, Gary Bader, Emek Demir, Chris Sander, Robin Haw, Guanming Wu, Lincoln Stein, Henning Hermjakob, Peter D’Eustachio, The reactome pathway knowledgebase 2022, Nucleic Acids Research, 2021;, kab1028, https://doi.org/10.1093/nar/gkab1028
Griss J, Viteri G, Sidiropoulos K, Nguyen V, Fabregat A, Hermjakob H. ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis. Mol Cell Proteomics. 2020 Sep 9. doi: 10.1074/mcp. PubMed PMID: 32907876.
Other "Reactome Analysis Service":
rba_reactome_analysis()
,
rba_reactome_analysis_download()
,
rba_reactome_analysis_import()
,
rba_reactome_analysis_pdf()
,
rba_reactome_analysis_species()
,
rba_reactome_analysis_token()
## Not run: rba_reactome_analysis_mapping(c("Q8SQ34", "cd40")) ## End(Not run)
## Not run: rba_reactome_analysis_mapping(c("Q8SQ34", "cd40")) ## End(Not run)
Use this function to save a detailed report of your previous analysis (That
you have done with rba_reactome_analysis
). You need
to supply a 'token' associated to your previous analysis.
rba_reactome_analysis_pdf( token, species, save_to = NULL, number = 25, resource = "TOTAL", diagram_profile = "Modern", analysis_profile = "Standard", fireworks_profile = "Barium Lithium", ... )
rba_reactome_analysis_pdf( token, species, save_to = NULL, number = 25, resource = "TOTAL", diagram_profile = "Modern", analysis_profile = "Standard", fireworks_profile = "Barium Lithium", ... )
token |
A token associated to your previous Reactome analysis. |
species |
Numeric or Character: NCBI Taxonomy identifier (Human Taxonomy
ID is 9606.) or species name (e.g. "Homo sapiens"). See
|
save_to |
NULL or Character:
|
number |
Numeric: Maximum number of the reported pathways. Cannot not be greater than 50. |
resource |
Filter results based on the resource. Default is "TOTAL", available choices are: "TOTAL", "UNIPROT", "ENSEMBL", "CHEBI", "IUPHAR", "MIRBASE", "NCBI_PROTEIN", "EMBL", "COMPOUND", "ENTITIES_FDR" or "PUBCHEM_COMPOUND". |
diagram_profile |
Color profile of diagrams, should be either "Modern" (default) or "Standard". |
analysis_profile |
Color profile of analysis, should be one of: "Standard" (default), "Strosobar" or "Copper Plus". |
fireworks_profile |
Color profile of overview diagram, should be one of: "Copper", "Copper Plus", "Barium Lithium" or "calcium salts". |
... |
rbioapi option(s). See |
Token is associated to each Reactome analysis results and kept by Reactome
for at least 7 days. You can locate it in
rba_reactome_analysis
's output, under a sub-list named
"summary" (i.e. results$summary$token).
Note that Reactome will store your token for only 7 days. You can
download your full results with
rba_reactome_analysis_download
, and re-import it anytime to
reactome (using rba_reactome_analysis_import
) to generate
a new token.
Use rba_reactome_analysis_download
to save your results
in other formats.
NULL, a PDF file will be saved to disk.
"GET https://reactome.org/AnalysisService/report/{token}/{species}/ {filename}.pdf"
Marc Gillespie, Bijay Jassal, Ralf Stephan, Marija Milacic, Karen Rothfels, Andrea Senff-Ribeiro, Johannes Griss, Cristoffer Sevilla, Lisa Matthews, Chuqiao Gong, Chuan Deng, Thawfeek Varusai, Eliot Ragueneau, Yusra Haider, Bruce May, Veronica Shamovsky, Joel Weiser, Timothy Brunson, Nasim Sanati, Liam Beckman, Xiang Shao, Antonio Fabregat, Konstantinos Sidiropoulos, Julieth Murillo, Guilherme Viteri, Justin Cook, Solomon Shorser, Gary Bader, Emek Demir, Chris Sander, Robin Haw, Guanming Wu, Lincoln Stein, Henning Hermjakob, Peter D’Eustachio, The reactome pathway knowledgebase 2022, Nucleic Acids Research, 2021;, kab1028, https://doi.org/10.1093/nar/gkab1028
Griss J, Viteri G, Sidiropoulos K, Nguyen V, Fabregat A, Hermjakob H. ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis. Mol Cell Proteomics. 2020 Sep 9. doi: 10.1074/mcp. PubMed PMID: 32907876.
rba_reactome_analysis_download
rba_reactome_analysis
Other "Reactome Analysis Service":
rba_reactome_analysis()
,
rba_reactome_analysis_download()
,
rba_reactome_analysis_import()
,
rba_reactome_analysis_mapping()
,
rba_reactome_analysis_species()
,
rba_reactome_analysis_token()
## Not run: rba_reactome_analysis_pdf(token = "MjAyMDEwMTYwMTI3MTNfMjY1MjM%3D", species = 9606, save_to = "my_analysis.pdf") ## End(Not run)
## Not run: rba_reactome_analysis_pdf(token = "MjAyMDEwMTYwMTI3MTNfMjY1MjM%3D", species = 9606, save_to = "my_analysis.pdf") ## End(Not run)
Use This function to Compare human's manually-curated pathways and computationally inferred pathways (orthologous) in other species.
rba_reactome_analysis_species( species_dbid, sort_by = "ENTITIES_PVALUE", order = "ASC", resource = "TOTAL", p_value = 1, min = NULL, max = NULL, ... )
rba_reactome_analysis_species( species_dbid, sort_by = "ENTITIES_PVALUE", order = "ASC", resource = "TOTAL", p_value = 1, min = NULL, max = NULL, ... )
species_dbid |
Numeric: Reactome DbId (e.g Mus musculus is 48892) of
the species you want to compare with Homo sapiens. See
|
sort_by |
Sort the result based on what column? available choices are: "NAME", "TOTAL_ENTITIES", "TOTAL_INTERACTORS", "TOTAL_REACTIONS", "FOUND_ENTITIES", "FOUND_INTERACTORS", "FOUND_REACTIONS", "ENTITIES_RATIO", "ENTITIES_PVALUE", "ENTITIES_FDR" or "REACTIONS_RATIO" |
order |
Sort Order. Can be either "ASC" (default) or "DESC". |
resource |
Filter results based on the resource. Default is "TOTAL", available choices are: "TOTAL", "UNIPROT", "ENSEMBL", "CHEBI", "IUPHAR", "MIRBASE", "NCBI_PROTEIN", "EMBL", "COMPOUND", "ENTITIES_FDR" or "PUBCHEM_COMPOUND". |
p_value |
Set a P value threshold. Only results with P value equal to or less than your supplied threshold will be returned. (default = 1, Meaning no P value filtering) |
min |
(numeric) Minimum number of entities that a pathways should have to be included in the results. |
max |
(numeric) Maximum number of entities that a pathways should have to be included in the results. |
... |
rbioapi option(s). See |
Reactome incorporate manually curated human reactions and PANTHER's
protein homology data to Computationally infer events in other eukaryotic
species.
In version 73 (11 June 2020), using an orthology-based approach,
Homo sapiens events was projected to 18,654 orthologous pathways (with
81,835 orthologous proteins) in 15 non-human species.
See
Reactome Computationally Inferred Events for more information.
List with the results of the comparison.
"GET https://reactome.org/AnalysisService/species/homoSapiens/{species}"
Marc Gillespie, Bijay Jassal, Ralf Stephan, Marija Milacic, Karen Rothfels, Andrea Senff-Ribeiro, Johannes Griss, Cristoffer Sevilla, Lisa Matthews, Chuqiao Gong, Chuan Deng, Thawfeek Varusai, Eliot Ragueneau, Yusra Haider, Bruce May, Veronica Shamovsky, Joel Weiser, Timothy Brunson, Nasim Sanati, Liam Beckman, Xiang Shao, Antonio Fabregat, Konstantinos Sidiropoulos, Julieth Murillo, Guilherme Viteri, Justin Cook, Solomon Shorser, Gary Bader, Emek Demir, Chris Sander, Robin Haw, Guanming Wu, Lincoln Stein, Henning Hermjakob, Peter D’Eustachio, The reactome pathway knowledgebase 2022, Nucleic Acids Research, 2021;, kab1028, https://doi.org/10.1093/nar/gkab1028
Griss J, Viteri G, Sidiropoulos K, Nguyen V, Fabregat A, Hermjakob H. ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis. Mol Cell Proteomics. 2020 Sep 9. doi: 10.1074/mcp. PubMed PMID: 32907876.
Other "Reactome Analysis Service":
rba_reactome_analysis()
,
rba_reactome_analysis_download()
,
rba_reactome_analysis_import()
,
rba_reactome_analysis_mapping()
,
rba_reactome_analysis_pdf()
,
rba_reactome_analysis_token()
rba_reactome_analysis_species(species_dbid = 48892)
rba_reactome_analysis_species(species_dbid = 48892)
Use a token generated After a Reactome analysis
(via rba_reactome_analysis
) to Retrieve the analysis results.
The output format is identical to the returned object of
rba_reactome_analysis
.
rba_reactome_analysis_token( token, species, sort_by = "ENTITIES_PVALUE", order = "ASC", resource = "TOTAL", p_value = NULL, include_disease = TRUE, min = NULL, max = NULL, ... )
rba_reactome_analysis_token( token, species, sort_by = "ENTITIES_PVALUE", order = "ASC", resource = "TOTAL", p_value = NULL, include_disease = TRUE, min = NULL, max = NULL, ... )
token |
A token associated to your previous Reactome analysis. |
species |
Numeric or Character: NCBI Taxonomy identifier (Human
is 9606), species name (e.g. "Homo sapiens") or Reactome DbId (e.g
Homo sapiens is 48887). See
|
sort_by |
Sort the result based on what column? available choices are: "NAME", "TOTAL_ENTITIES", "TOTAL_INTERACTORS", "TOTAL_REACTIONS", "FOUND_ENTITIES", "FOUND_INTERACTORS", "FOUND_REACTIONS", "ENTITIES_RATIO", "ENTITIES_PVALUE", "ENTITIES_FDR" or "REACTIONS_RATIO" |
order |
Sort Order. Can be either "ASC" (default) or "DESC". |
resource |
Filter results based on the resource. Default is "TOTAL", available choices are: "TOTAL", "UNIPROT", "ENSEMBL", "CHEBI", "IUPHAR", "MIRBASE", "NCBI_PROTEIN", "EMBL", "COMPOUND", "ENTITIES_FDR" or "PUBCHEM_COMPOUND". |
p_value |
Set a P value threshold. Only results with P value equal to or less than your supplied threshold will be returned. (default = 1, Meaning no P value filtering) |
include_disease |
Logical (default = TRUE) Should the disease pathways be included in the results? |
min |
(numeric) Minimum number of entities that a pathways should have to be included in the results. |
max |
(numeric) Maximum number of entities that a pathways should have to be included in the results. |
... |
rbioapi option(s). See |
After Any Analysis, Reactome will associate a token to your analysis. It
can be later used to in function that requires the token (e.g to retrieve
the analysis results, download pdf).
Note that Reactome will store your token for only 7 days. You can
download your full results with
rba_reactome_analysis_download
, and re-import it anytime to
reactome (using rba_reactome_analysis_import
) to generate
a new token.
List containing the results and information of your analysis.
"GET https://reactome.org/AnalysisService/token/{token}"
Marc Gillespie, Bijay Jassal, Ralf Stephan, Marija Milacic, Karen Rothfels, Andrea Senff-Ribeiro, Johannes Griss, Cristoffer Sevilla, Lisa Matthews, Chuqiao Gong, Chuan Deng, Thawfeek Varusai, Eliot Ragueneau, Yusra Haider, Bruce May, Veronica Shamovsky, Joel Weiser, Timothy Brunson, Nasim Sanati, Liam Beckman, Xiang Shao, Antonio Fabregat, Konstantinos Sidiropoulos, Julieth Murillo, Guilherme Viteri, Justin Cook, Solomon Shorser, Gary Bader, Emek Demir, Chris Sander, Robin Haw, Guanming Wu, Lincoln Stein, Henning Hermjakob, Peter D’Eustachio, The reactome pathway knowledgebase 2022, Nucleic Acids Research, 2021;, kab1028, https://doi.org/10.1093/nar/gkab1028
Griss J, Viteri G, Sidiropoulos K, Nguyen V, Fabregat A, Hermjakob H. ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis. Mol Cell Proteomics. 2020 Sep 9. doi: 10.1074/mcp. PubMed PMID: 32907876.
Other "Reactome Analysis Service":
rba_reactome_analysis()
,
rba_reactome_analysis_download()
,
rba_reactome_analysis_import()
,
rba_reactome_analysis_mapping()
,
rba_reactome_analysis_pdf()
,
rba_reactome_analysis_species()
## Not run: rba_reactome_analysis_token(token = "MjAyMDEwMTYwMTI3MTNfMjY1MjM", species = 9606) ## End(Not run)
## Not run: rba_reactome_analysis_token(token = "MjAyMDEwMTYwMTI3MTNfMjY1MjM", species = 9606) ## End(Not run)
This function will retrieve a list of complexes that include your supplied molecule as a component.
rba_reactome_complex_list(id, resource, ...)
rba_reactome_complex_list(id, resource, ...)
id |
Molecule's external Identifier |
resource |
What is the resource of your supplied ID? see: Reactome External Identifiers |
... |
rbioapi option(s). See |
Data frame where each row is a complex containing your supplied molecule and columns are pertinent information.
"GET https://reactome.org/ContentService/data/complexes/{resource}/ {identifier}"
Marc Gillespie, Bijay Jassal, Ralf Stephan, Marija Milacic, Karen Rothfels, Andrea Senff-Ribeiro, Johannes Griss, Cristoffer Sevilla, Lisa Matthews, Chuqiao Gong, Chuan Deng, Thawfeek Varusai, Eliot Ragueneau, Yusra Haider, Bruce May, Veronica Shamovsky, Joel Weiser, Timothy Brunson, Nasim Sanati, Liam Beckman, Xiang Shao, Antonio Fabregat, Konstantinos Sidiropoulos, Julieth Murillo, Guilherme Viteri, Justin Cook, Solomon Shorser, Gary Bader, Emek Demir, Chris Sander, Robin Haw, Guanming Wu, Lincoln Stein, Henning Hermjakob, Peter D’Eustachio, The reactome pathway knowledgebase 2022, Nucleic Acids Research, 2021;, kab1028, https://doi.org/10.1093/nar/gkab1028
Griss J, Viteri G, Sidiropoulos K, Nguyen V, Fabregat A, Hermjakob H. ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis. Mol Cell Proteomics. 2020 Sep 9. doi: 10.1074/mcp. PubMed PMID: 32907876.
Other "Reactome Content Service - Physical Entity Queries":
rba_reactome_complex_subunits()
,
rba_reactome_entity_other_forms()
,
rba_reactome_participant_of()
rba_reactome_complex_list(id = "3845", resource = "NCBI Gene") rba_reactome_complex_list(id = "P00533", resource = "UniProt")
rba_reactome_complex_list(id = "3845", resource = "NCBI Gene") rba_reactome_complex_list(id = "P00533", resource = "UniProt")
This function will return a list of subunits which are participants of your supplied complex.
rba_reactome_complex_subunits(complex_id, exclude_structures = FALSE, ...)
rba_reactome_complex_subunits(complex_id, exclude_structures = FALSE, ...)
complex_id |
Reactome stable Identifier of the complex. |
exclude_structures |
(logical) Should the contained complexes and entity sets be excluded from the results? (default = FALSE) |
... |
rbioapi option(s). See |
Subunits will be returned recursively; Which means that if a subunit was itself a complex, subunit of that complex will be also returned in the results.
Data frame which each row is a subunit of your supplied complex and the columns are pertinent information of that subunit.
"GET https://reactome.org/ContentService/data/complex/{id}/subunits"
Marc Gillespie, Bijay Jassal, Ralf Stephan, Marija Milacic, Karen Rothfels, Andrea Senff-Ribeiro, Johannes Griss, Cristoffer Sevilla, Lisa Matthews, Chuqiao Gong, Chuan Deng, Thawfeek Varusai, Eliot Ragueneau, Yusra Haider, Bruce May, Veronica Shamovsky, Joel Weiser, Timothy Brunson, Nasim Sanati, Liam Beckman, Xiang Shao, Antonio Fabregat, Konstantinos Sidiropoulos, Julieth Murillo, Guilherme Viteri, Justin Cook, Solomon Shorser, Gary Bader, Emek Demir, Chris Sander, Robin Haw, Guanming Wu, Lincoln Stein, Henning Hermjakob, Peter D’Eustachio, The reactome pathway knowledgebase 2022, Nucleic Acids Research, 2021;, kab1028, https://doi.org/10.1093/nar/gkab1028
Griss J, Viteri G, Sidiropoulos K, Nguyen V, Fabregat A, Hermjakob H. ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis. Mol Cell Proteomics. 2020 Sep 9. doi: 10.1074/mcp. PubMed PMID: 32907876.
Other "Reactome Content Service - Physical Entity Queries":
rba_reactome_complex_list()
,
rba_reactome_entity_other_forms()
,
rba_reactome_participant_of()
rba_reactome_complex_subunits(complex_id = "R-HSA-5674003", exclude_structures = FALSE)
rba_reactome_complex_subunits(complex_id = "R-HSA-5674003", exclude_structures = FALSE)
This function Retrieve a list of all diseases or disease DOIDs annotated in Reactome.
rba_reactome_diseases(doid = FALSE, ...)
rba_reactome_diseases(doid = FALSE, ...)
doid |
(logical) Return disease DOIDs instead of diseases? (default = FALSE) |
... |
rbioapi option(s). See |
Data frame containing all the disease annotation available at Reactome. If doid was set to TRUE, DOID info will be returned instead.
"GET https://reactome.org/ContentService/data/diseases"
"GET https://reactome.org/ContentService/data/diseases/doid"
Marc Gillespie, Bijay Jassal, Ralf Stephan, Marija Milacic, Karen Rothfels, Andrea Senff-Ribeiro, Johannes Griss, Cristoffer Sevilla, Lisa Matthews, Chuqiao Gong, Chuan Deng, Thawfeek Varusai, Eliot Ragueneau, Yusra Haider, Bruce May, Veronica Shamovsky, Joel Weiser, Timothy Brunson, Nasim Sanati, Liam Beckman, Xiang Shao, Antonio Fabregat, Konstantinos Sidiropoulos, Julieth Murillo, Guilherme Viteri, Justin Cook, Solomon Shorser, Gary Bader, Emek Demir, Chris Sander, Robin Haw, Guanming Wu, Lincoln Stein, Henning Hermjakob, Peter D’Eustachio, The reactome pathway knowledgebase 2022, Nucleic Acids Research, 2021;, kab1028, https://doi.org/10.1093/nar/gkab1028
Griss J, Viteri G, Sidiropoulos K, Nguyen V, Fabregat A, Hermjakob H. ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis. Mol Cell Proteomics. 2020 Sep 9. doi: 10.1074/mcp. PubMed PMID: 32907876.
rba_reactome_diseases() rba_reactome_diseases(doid = TRUE)
rba_reactome_diseases() rba_reactome_diseases(doid = TRUE)
This function retrieve a list containing all other forms of your supplied Physical Entity ID.
rba_reactome_entity_other_forms(entity_id, ...)
rba_reactome_entity_other_forms(entity_id, ...)
entity_id |
Reactome's entity ID. |
... |
rbioapi option(s). See |
According to Reactome API documentation, "These other forms are Physical Entities that share the same Reference Entity identifier, e.g. PTEN H93R R-HSA-2318524 and PTEN C124R R-HSA-2317439 are two forms of PTEN."
Data frame where each row is other forms of your supplied Entity ID and columns are pertinent information.
"GET https://reactome.org/ContentService/data/entity/{id}/otherForms"
Marc Gillespie, Bijay Jassal, Ralf Stephan, Marija Milacic, Karen Rothfels, Andrea Senff-Ribeiro, Johannes Griss, Cristoffer Sevilla, Lisa Matthews, Chuqiao Gong, Chuan Deng, Thawfeek Varusai, Eliot Ragueneau, Yusra Haider, Bruce May, Veronica Shamovsky, Joel Weiser, Timothy Brunson, Nasim Sanati, Liam Beckman, Xiang Shao, Antonio Fabregat, Konstantinos Sidiropoulos, Julieth Murillo, Guilherme Viteri, Justin Cook, Solomon Shorser, Gary Bader, Emek Demir, Chris Sander, Robin Haw, Guanming Wu, Lincoln Stein, Henning Hermjakob, Peter D’Eustachio, The reactome pathway knowledgebase 2022, Nucleic Acids Research, 2021;, kab1028, https://doi.org/10.1093/nar/gkab1028
Griss J, Viteri G, Sidiropoulos K, Nguyen V, Fabregat A, Hermjakob H. ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis. Mol Cell Proteomics. 2020 Sep 9. doi: 10.1074/mcp. PubMed PMID: 32907876.
Other "Reactome Content Service - Physical Entity Queries":
rba_reactome_complex_list()
,
rba_reactome_complex_subunits()
,
rba_reactome_participant_of()
rba_reactome_entity_other_forms("R-HSA-199420")
rba_reactome_entity_other_forms("R-HSA-199420")
Along with Reactome's events hierarchy, This function will retrieve all the events beginning from your supplied event up to the "Top level Pathway". see "Details section" for more information.
rba_reactome_event_ancestors(event_id, ...)
rba_reactome_event_ancestors(event_id, ...)
event_id |
Reactome event's identifier. |
... |
rbioapi option(s). See |
By Reactome's definition, Events are the building blocks of biological processes and could be of two main classes: "Pathway" or "Reaction-like events". The events are organized in a hierarchical structure; and each event could be child or parent to another event; The hierarchy will always begin with a "Top level pathway" event. Also note that a given event could be part of more that one hierarchies.
List which every element is a Data frame listing your supplied event along with it's ancestor events. Because any given event can be part of more than one pathway hierarchy, the list may contain multiple data frames.
"GET https://reactome.org/ContentService/data/event/{id}/ancestors"
Marc Gillespie, Bijay Jassal, Ralf Stephan, Marija Milacic, Karen Rothfels, Andrea Senff-Ribeiro, Johannes Griss, Cristoffer Sevilla, Lisa Matthews, Chuqiao Gong, Chuan Deng, Thawfeek Varusai, Eliot Ragueneau, Yusra Haider, Bruce May, Veronica Shamovsky, Joel Weiser, Timothy Brunson, Nasim Sanati, Liam Beckman, Xiang Shao, Antonio Fabregat, Konstantinos Sidiropoulos, Julieth Murillo, Guilherme Viteri, Justin Cook, Solomon Shorser, Gary Bader, Emek Demir, Chris Sander, Robin Haw, Guanming Wu, Lincoln Stein, Henning Hermjakob, Peter D’Eustachio, The reactome pathway knowledgebase 2022, Nucleic Acids Research, 2021;, kab1028, https://doi.org/10.1093/nar/gkab1028
Griss J, Viteri G, Sidiropoulos K, Nguyen V, Fabregat A, Hermjakob H. ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis. Mol Cell Proteomics. 2020 Sep 9. doi: 10.1074/mcp. PubMed PMID: 32907876.
Other "Reactome Content Service - Queries Related to Events":
rba_reactome_event_hierarchy()
rba_reactome_event_ancestors("R-HSA-5673001")
rba_reactome_event_ancestors("R-HSA-5673001")
This function will retrieve the full Events hierarchy of your supplied species. Directly under each species, each child element is a "top Level Pathway". You can traverse the events tree down by following the "children" element.
rba_reactome_event_hierarchy(species, ...)
rba_reactome_event_hierarchy(species, ...)
species |
Numeric or Character: NCBI Taxonomy identifier (Human Taxonomy
ID is 9606.) or species name (e.g. "Homo sapiens"). See
|
... |
rbioapi option(s). See |
By Reactome's definition, Events are the building blocks of biological processes and could be of two main classes: "Pathway" or "Reaction-like events". The events are organized in a hierarchical structure; and each event could be child or parent to another event; The hierarchy will always begin with a "Top level pathway" event. Also note that a given event could be part of more that one hierarchies.
List which is a representation of the species's events hierarchy described in the "Details section".
"GET https://reactome.org/ContentService/data/eventsHierarchy/{species}"
Marc Gillespie, Bijay Jassal, Ralf Stephan, Marija Milacic, Karen Rothfels, Andrea Senff-Ribeiro, Johannes Griss, Cristoffer Sevilla, Lisa Matthews, Chuqiao Gong, Chuan Deng, Thawfeek Varusai, Eliot Ragueneau, Yusra Haider, Bruce May, Veronica Shamovsky, Joel Weiser, Timothy Brunson, Nasim Sanati, Liam Beckman, Xiang Shao, Antonio Fabregat, Konstantinos Sidiropoulos, Julieth Murillo, Guilherme Viteri, Justin Cook, Solomon Shorser, Gary Bader, Emek Demir, Chris Sander, Robin Haw, Guanming Wu, Lincoln Stein, Henning Hermjakob, Peter D’Eustachio, The reactome pathway knowledgebase 2022, Nucleic Acids Research, 2021;, kab1028, https://doi.org/10.1093/nar/gkab1028
Griss J, Viteri G, Sidiropoulos K, Nguyen V, Fabregat A, Hermjakob H. ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis. Mol Cell Proteomics. 2020 Sep 9. doi: 10.1074/mcp. PubMed PMID: 32907876.
Other "Reactome Content Service - Queries Related to Events":
rba_reactome_event_ancestors()
## Not run: #very large response! rba_reactome_event_hierarchy("Homo sapiens") ## End(Not run) ## Not run: #very large response! rba_reactome_event_hierarchy(9606) ## End(Not run)
## Not run: #very large response! rba_reactome_event_hierarchy("Homo sapiens") ## End(Not run) ## Not run: #very large response! rba_reactome_event_hierarchy(9606) ## End(Not run)
This function could be called in two scenarios:
With create_document = FALSE: To retrieve an image of that event's Diagram.
With create_document = TRUE: To retrieve a PDF document with the event's diagram image and additional information.
see "Details section" for more information
rba_reactome_exporter_diagram( event_id, save_to = NULL, create_document = FALSE, resource = "TOTAL", diagram_profile = "Modern", analysis_profile = "Standard", token = NULL, exp_column = NULL, document_level = 1, output_format = "png", image_quality = 5, flag_element = NULL, flg_interactors = TRUE, sel = NULL, title = TRUE, margin = 15, ehld = FALSE, ... )
rba_reactome_exporter_diagram( event_id, save_to = NULL, create_document = FALSE, resource = "TOTAL", diagram_profile = "Modern", analysis_profile = "Standard", token = NULL, exp_column = NULL, document_level = 1, output_format = "png", image_quality = 5, flag_element = NULL, flg_interactors = TRUE, sel = NULL, title = TRUE, margin = 15, ehld = FALSE, ... )
event_id |
Reactome event's identifier. |
save_to |
NULL or Character:
|
create_document |
logical: Create PDF document instead of image? ( default = FALSE) |
resource |
The analysis resource for which the results will be overlaid on top of the given pathways overview, |
diagram_profile |
Color profile of diagrams, should be either "Modern" (default) or "Standard". |
analysis_profile |
Color profile of analysis, should be one of: "Standard" (default), "Strosobar" or "Copper Plus" |
token |
The analysis Token for which the results will be overlaid on
top of the given pathways overview. see:
|
exp_column |
numeric: (only if token is supplied) Specify the expression column for the overlay. |
document_level |
numeric: (Only if "create_document" is TRUE) if 0 (default) the event's children will not be included in the PDF document. Set this to 1 to include event's children. |
output_format |
(Only if "create_document" is FALSE) Image format of the saved diagram. Can be one of: png (default), jpeg, svg or gif. |
image_quality |
Numeric: (Only if "create_document" is FALSE), a number ranging from 1 to 10. 1 is the lowest quality and 10 is the highest (default = 5). |
flag_element |
(Only if "create_document" is FALSE) gene name, protein ID, chemical ID or Reactome ID of a diagram's element to be flagged. |
flg_interactors |
Logical: (Only if "create_document" is FALSE) Should the interactor be considered when flagging a diagram element? (default = TRUE) |
sel |
(Only if "create_document" is FALSE) CSV line for highlighting element(s) selection in the diagram. |
title |
Logical: (Only if "create_document" is FALSE) Should the pathway name be displayed below the image? (default = TRUE) |
margin |
Numeric: (Only if "create_document" is FALSE) A number ranging from 0 to 20 to set as the image's margin. (default = 15) |
ehld |
logical: (Only if "create_document" is FALSE) Should "Enhanced High Level Diagram" be considered? |
... |
rbioapi option(s). See |
If the function is called with create_document = FALSE:
The result will be an image with the format supplied in "output_format"
argument. If the supplied event ID refers to a pathway, the image's
content will be the that pathways diagram. If the supplied event ID refers
to a sub-pathway or reaction event, the parent pathway's diagram will be
exported, with that reaction or sub-pathway's events highlighted.
Note that to export an image of reaction-like event separately, you
should use rba_reactome_exporter_reaction
.
If the function is called with create_document = TRUE:
A PDF document will contain an image of the event's diagram and the
following information of that events: Summation, Literature references,
Edit history type, location, compartments and diseases.
note that if you call the function with "document level = 1", information
of your supplied event's children will also be included.
NULL, Based to the inputs, an image or PDF file will be saved to disk.
"GET https://reactome.org/ContentService/exporter/diagram/{identifier}
.{ext}"
"GET https://reactome.org/ContentService/exporter/document/event/
{identifier}.pdf"
Marc Gillespie, Bijay Jassal, Ralf Stephan, Marija Milacic, Karen Rothfels, Andrea Senff-Ribeiro, Johannes Griss, Cristoffer Sevilla, Lisa Matthews, Chuqiao Gong, Chuan Deng, Thawfeek Varusai, Eliot Ragueneau, Yusra Haider, Bruce May, Veronica Shamovsky, Joel Weiser, Timothy Brunson, Nasim Sanati, Liam Beckman, Xiang Shao, Antonio Fabregat, Konstantinos Sidiropoulos, Julieth Murillo, Guilherme Viteri, Justin Cook, Solomon Shorser, Gary Bader, Emek Demir, Chris Sander, Robin Haw, Guanming Wu, Lincoln Stein, Henning Hermjakob, Peter D’Eustachio, The reactome pathway knowledgebase 2022, Nucleic Acids Research, 2021;, kab1028, https://doi.org/10.1093/nar/gkab1028
Griss J, Viteri G, Sidiropoulos K, Nguyen V, Fabregat A, Hermjakob H. ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis. Mol Cell Proteomics. 2020 Sep 9. doi: 10.1074/mcp. PubMed PMID: 32907876.
rba_reactome_exporter_reaction
rba_reactome_analysis
Other "Reactome Content Service - Format Exporter":
rba_reactome_exporter_event()
,
rba_reactome_exporter_overview()
,
rba_reactome_exporter_reaction()
## Not run: rba_reactome_exporter_diagram(event_id = "R-HSA-177929", create_document = FALSE) ## End(Not run) ## Not run: rba_reactome_exporter_diagram(event_id = "R-HSA-6787403", create_document = FALSE) ## End(Not run) ## Not run: rba_reactome_exporter_diagram(event_id = "R-HSA-177929", create_document = TRUE) ## End(Not run) ## Not run: rba_reactome_exporter_diagram(event_id = "R-HSA-177929", output_format = "svg", save_to = "reactome_event_diagram.svg") ## End(Not run)
## Not run: rba_reactome_exporter_diagram(event_id = "R-HSA-177929", create_document = FALSE) ## End(Not run) ## Not run: rba_reactome_exporter_diagram(event_id = "R-HSA-6787403", create_document = FALSE) ## End(Not run) ## Not run: rba_reactome_exporter_diagram(event_id = "R-HSA-177929", create_document = TRUE) ## End(Not run) ## Not run: rba_reactome_exporter_diagram(event_id = "R-HSA-177929", output_format = "svg", save_to = "reactome_event_diagram.svg") ## End(Not run)
This function will export a supplied Reactome Event (Pathway or Reaction) to a SBGN (Systems Biology Graphical Notation) or SBML (Systems Biology Markup Language)
rba_reactome_exporter_event(event_id, output_format, save_to = NULL, ...)
rba_reactome_exporter_event(event_id, output_format, save_to = NULL, ...)
event_id |
Reactome event's database IDs (DbId) or Stable IDs (StId). |
output_format |
Either "sbgn" or "sbml". |
save_to |
NULL or Character:
|
... |
rbioapi option(s). See |
NULL, According to the inputs, a SBGN or SBML file will be saved to disk.
"GET https://reactome.org/ContentService/exporter/event/
{identifier}.sbgn"
"GET https://reactome.org/ContentService/exporter/event/
{identifier}.sbml"
Marc Gillespie, Bijay Jassal, Ralf Stephan, Marija Milacic, Karen Rothfels, Andrea Senff-Ribeiro, Johannes Griss, Cristoffer Sevilla, Lisa Matthews, Chuqiao Gong, Chuan Deng, Thawfeek Varusai, Eliot Ragueneau, Yusra Haider, Bruce May, Veronica Shamovsky, Joel Weiser, Timothy Brunson, Nasim Sanati, Liam Beckman, Xiang Shao, Antonio Fabregat, Konstantinos Sidiropoulos, Julieth Murillo, Guilherme Viteri, Justin Cook, Solomon Shorser, Gary Bader, Emek Demir, Chris Sander, Robin Haw, Guanming Wu, Lincoln Stein, Henning Hermjakob, Peter D’Eustachio, The reactome pathway knowledgebase 2022, Nucleic Acids Research, 2021;, kab1028, https://doi.org/10.1093/nar/gkab1028
Griss J, Viteri G, Sidiropoulos K, Nguyen V, Fabregat A, Hermjakob H. ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis. Mol Cell Proteomics. 2020 Sep 9. doi: 10.1074/mcp. PubMed PMID: 32907876.
Other "Reactome Content Service - Format Exporter":
rba_reactome_exporter_diagram()
,
rba_reactome_exporter_overview()
,
rba_reactome_exporter_reaction()
## Not run: rba_reactome_exporter_event(event_id = "R-HSA-177929", output_format = "sbgn", save_to = "R-HSA-177929.sbgn") ## End(Not run) ## Not run: rba_reactome_exporter_event(event_id = "R-HSA-177929", output_format = "sbgn") ## End(Not run)
## Not run: rba_reactome_exporter_event(event_id = "R-HSA-177929", output_format = "sbgn", save_to = "R-HSA-177929.sbgn") ## End(Not run) ## Not run: rba_reactome_exporter_event(event_id = "R-HSA-177929", output_format = "sbgn") ## End(Not run)
This function will Save a Pathway Overview of the supplied specie as an image file.
rba_reactome_exporter_overview( species, output_format = "png", save_to = NULL, image_quality = 5, flag_element = NULL, flg_interactors = TRUE, sel = NULL, title = TRUE, margin = 15, diagram_profile = "Copper", token = NULL, resource = "TOTAL", exp_column = NULL, coverage = FALSE, ... )
rba_reactome_exporter_overview( species, output_format = "png", save_to = NULL, image_quality = 5, flag_element = NULL, flg_interactors = TRUE, sel = NULL, title = TRUE, margin = 15, diagram_profile = "Copper", token = NULL, resource = "TOTAL", exp_column = NULL, coverage = FALSE, ... )
species |
Numeric or Character: NCBI Taxonomy identifier (Human Taxonomy
ID is 9606.) or species name (e.g. "Homo sapiens"). See
|
output_format |
Images format, Can be one of: png (default), jpeg, svg or gif. |
save_to |
NULL or Character:
|
image_quality |
Numeric: A number ranging from 1 to 10. 1 is the lowest quality and 10 is the highest (default = 5). |
flag_element |
Gene name, protein ID, chemical ID or Reactome ID of a diagram's element to be flagged. |
flg_interactors |
Logical: Should the interactor be considered when flagging a diagram element? (default = TRUE) |
sel |
CSV line for highlighting element(s) selection in the diagram. |
title |
Logical: Should the pathway name be displayed below the image? (default = TRUE) |
margin |
Numeric: A number ranging from 0 to 20 to set as the image's margin. (default = 15) |
diagram_profile |
Color profile of diagrams, should be one of "Copper" (default), "Copper Plus", "Barium Lithium" or "calcium salts". |
token |
The analysis Token for which the results will be overlaid on
top of the given pathways overview. see:
|
resource |
The analysis resource for which the results will be overlaid on top of the given pathways overview. |
exp_column |
numeric: (only if token is supplied) Specify the expression column for the overlay. |
coverage |
Logical: Should the analysis coverage values be overlaid? (default = FALSE) |
... |
rbioapi option(s). See |
NULL, Based to the inputs, an image file will be saved to disk.
"GET https://reactome.org/ContentService/exporter/fireworks/{species}.{ext}"
Marc Gillespie, Bijay Jassal, Ralf Stephan, Marija Milacic, Karen Rothfels, Andrea Senff-Ribeiro, Johannes Griss, Cristoffer Sevilla, Lisa Matthews, Chuqiao Gong, Chuan Deng, Thawfeek Varusai, Eliot Ragueneau, Yusra Haider, Bruce May, Veronica Shamovsky, Joel Weiser, Timothy Brunson, Nasim Sanati, Liam Beckman, Xiang Shao, Antonio Fabregat, Konstantinos Sidiropoulos, Julieth Murillo, Guilherme Viteri, Justin Cook, Solomon Shorser, Gary Bader, Emek Demir, Chris Sander, Robin Haw, Guanming Wu, Lincoln Stein, Henning Hermjakob, Peter D’Eustachio, The reactome pathway knowledgebase 2022, Nucleic Acids Research, 2021;, kab1028, https://doi.org/10.1093/nar/gkab1028
Griss J, Viteri G, Sidiropoulos K, Nguyen V, Fabregat A, Hermjakob H. ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis. Mol Cell Proteomics. 2020 Sep 9. doi: 10.1074/mcp. PubMed PMID: 32907876.
Other "Reactome Content Service - Format Exporter":
rba_reactome_exporter_diagram()
,
rba_reactome_exporter_event()
,
rba_reactome_exporter_reaction()
## Not run: rba_reactome_exporter_overview(species = 9606, output_format = "svg", save_to = "human_pathways.svg") ## End(Not run) ## Not run: rba_reactome_exporter_overview(species = 9606, token = 123456789) ## End(Not run)
## Not run: rba_reactome_exporter_overview(species = 9606, output_format = "svg", save_to = "human_pathways.svg") ## End(Not run) ## Not run: rba_reactome_exporter_overview(species = 9606, token = 123456789) ## End(Not run)
This function will Save a Reactome event of class "ReactionLikeEvent" as an image file.
rba_reactome_exporter_reaction( event_id, save_to = NULL, output_format = "png", resource = "TOTAL", diagram_profile = "Modern", analysis_profile = "Standard", token = NULL, exp_column = NULL, image_quality = 5, flag_element = NULL, flg_interactors = TRUE, sel = NULL, title = TRUE, margin = 15, ... )
rba_reactome_exporter_reaction( event_id, save_to = NULL, output_format = "png", resource = "TOTAL", diagram_profile = "Modern", analysis_profile = "Standard", token = NULL, exp_column = NULL, image_quality = 5, flag_element = NULL, flg_interactors = TRUE, sel = NULL, title = TRUE, margin = 15, ... )
event_id |
Reactome Reaction-like event's identifier. |
save_to |
NULL or Character:
|
output_format |
Images format, Can be one of: png (default), jpeg, svg or gif. |
resource |
The analysis resource for which the results will be overlaid on top of the given pathways overview. |
diagram_profile |
Color profile of diagrams, should be one of "Copper" (default), "Copper Plus", "Barium Lithium" or "calcium salts". |
analysis_profile |
Color profile of analysis, should be one of: "Standard" (default), "Strosobar" or "Copper Plus". |
token |
The analysis Token for which the results will be overlaid on
top of the given pathways overview. see:
|
exp_column |
numeric: (only if token is supplied) Specify the expression column for the overlay. |
image_quality |
Numeric: A number ranging from 1 to 10. 1 is the lowest quality and 10 is the highest (default = 5). |
flag_element |
Gene name, protein ID, chemical ID or Reactome ID of a diagram's element to be flagged. |
flg_interactors |
Logical: Should the interactor be considered when flagging a diagram element? (default = TRUE) |
sel |
CSV line for highlighting element(s) selection in the diagram. |
title |
Logical: Should the pathway name be displayed below the image? (default = TRUE) |
margin |
Numeric: A number ranging from 0 to 20 to set as the image's margin. (default = 15) |
... |
rbioapi option(s). See |
Note that this function will save Reaction-like event separately and out
of it's parent pathway context. To overlay a Reaction on it's parent
pathway, use rba_reactome_exporter_diagram
.
NULL, Based to the inputs, an image file will be saved to disk.
"GET https://reactome.org/ContentService/exporter/reaction/ {identifier}.{ext}"
Marc Gillespie, Bijay Jassal, Ralf Stephan, Marija Milacic, Karen Rothfels, Andrea Senff-Ribeiro, Johannes Griss, Cristoffer Sevilla, Lisa Matthews, Chuqiao Gong, Chuan Deng, Thawfeek Varusai, Eliot Ragueneau, Yusra Haider, Bruce May, Veronica Shamovsky, Joel Weiser, Timothy Brunson, Nasim Sanati, Liam Beckman, Xiang Shao, Antonio Fabregat, Konstantinos Sidiropoulos, Julieth Murillo, Guilherme Viteri, Justin Cook, Solomon Shorser, Gary Bader, Emek Demir, Chris Sander, Robin Haw, Guanming Wu, Lincoln Stein, Henning Hermjakob, Peter D’Eustachio, The reactome pathway knowledgebase 2022, Nucleic Acids Research, 2021;, kab1028, https://doi.org/10.1093/nar/gkab1028
Griss J, Viteri G, Sidiropoulos K, Nguyen V, Fabregat A, Hermjakob H. ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis. Mol Cell Proteomics. 2020 Sep 9. doi: 10.1074/mcp. PubMed PMID: 32907876.
rba_reactome_exporter_diagram
rba_reactome_analysis
Other "Reactome Content Service - Format Exporter":
rba_reactome_exporter_diagram()
,
rba_reactome_exporter_event()
,
rba_reactome_exporter_overview()
## Not run: rba_reactome_exporter_diagram(event_id = "R-HSA-6787403", create_document = FALSE) ## End(Not run) ## Not run: rba_reactome_exporter_diagram(event_id = "R-HSA-6787403", output_format = "svg", save_to = "reactome_reacion_image.svg") ## End(Not run)
## Not run: rba_reactome_exporter_diagram(event_id = "R-HSA-6787403", create_document = FALSE) ## End(Not run) ## Not run: rba_reactome_exporter_diagram(event_id = "R-HSA-6787403", output_format = "svg", save_to = "reactome_reacion_image.svg") ## End(Not run)
You can call this function in two scenarios: 1- To retrieve information of all available PSICQUIC resources, call the function without providing any argument; i.e rba_reactome_interactors_psicquic(). 2-To retrieve a list of interactors of specific protein(s), fill out the function's arguments.
rba_reactome_interactors_psicquic( proteins = NULL, resource = NULL, details = TRUE, ... )
rba_reactome_interactors_psicquic( proteins = NULL, resource = NULL, details = TRUE, ... )
proteins |
Proteins to retrieve PSICQUIC interactors. |
resource |
The PSICQUIC resource for your supplied proteins. Call rba_reactome_interactors_psicquic() without argument to get the available options. |
details |
Logical: If TRUE (default) a detailed list of interactors will be returned. If FALSE, only a summary of available interactors will be returned. |
... |
rbioapi option(s). See |
Depending your input, a list containing the detailed or summary of PSICQUIC interactions or a data frame of all registered PSICQUIC resources.
"POST https://reactome.org/ContentService/interactors/psicquic/molecules/
{resource}/details"
"POST https://reactome.org/ContentService/interactors/psicquic/molecules/
{resource}/summary"
"GET https://reactome.org/ContentService/interactors/psicquic/resources"
Marc Gillespie, Bijay Jassal, Ralf Stephan, Marija Milacic, Karen Rothfels, Andrea Senff-Ribeiro, Johannes Griss, Cristoffer Sevilla, Lisa Matthews, Chuqiao Gong, Chuan Deng, Thawfeek Varusai, Eliot Ragueneau, Yusra Haider, Bruce May, Veronica Shamovsky, Joel Weiser, Timothy Brunson, Nasim Sanati, Liam Beckman, Xiang Shao, Antonio Fabregat, Konstantinos Sidiropoulos, Julieth Murillo, Guilherme Viteri, Justin Cook, Solomon Shorser, Gary Bader, Emek Demir, Chris Sander, Robin Haw, Guanming Wu, Lincoln Stein, Henning Hermjakob, Peter D’Eustachio, The reactome pathway knowledgebase 2022, Nucleic Acids Research, 2021;, kab1028, https://doi.org/10.1093/nar/gkab1028
Griss J, Viteri G, Sidiropoulos K, Nguyen V, Fabregat A, Hermjakob H. ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis. Mol Cell Proteomics. 2020 Sep 9. doi: 10.1074/mcp. PubMed PMID: 32907876.
Other "Reactome Content Service - Molecule Interactors":
rba_reactome_interactors_static()
rba_reactome_interactors_psicquic() rba_reactome_interactors_psicquic(proteins = c("TP53", "MYC"), resource = "BioGrid", details = FALSE) rba_reactome_interactors_psicquic(proteins = c("TP53", "MYC"), resource = "BioGrid", details = TRUE)
rba_reactome_interactors_psicquic() rba_reactome_interactors_psicquic(proteins = c("TP53", "MYC"), resource = "BioGrid", details = FALSE) rba_reactome_interactors_psicquic(proteins = c("TP53", "MYC"), resource = "BioGrid", details = TRUE)
Reactome maintain a locally host a version of IntAct(Static) interactions database. Using this function, you can retrieve IntAct information of a protein(s) in two scenarios:
If endpoint = "details" or "summary": Retrieve a detailed/summary information of your supplied protein accession(s) from IntAct database.
If endpoint = "pathway", Retrieve a list of Reactome pathways which include your supplied protein accession. Pathways with the class "TopLevelPathway" will be excluded.
rba_reactome_interactors_static( proteins, endpoint = "details", only_diagrammed = FALSE, species = NULL, ... )
rba_reactome_interactors_static( proteins, endpoint = "details", only_diagrammed = FALSE, species = NULL, ... )
proteins |
Uniprot proteins accession(s). If endpoint = "pathway", only a single protein accession can be supplied. |
endpoint |
Can be one of:
|
only_diagrammed |
Logical: (only when "endpoint = "pathway") If TRUE, pathways without diagram will be excluded. (default = FALSE) |
species |
Only when "endpoint = "pathway", The scientific name
of the species to search for the pathways. See
|
... |
rbioapi option(s). See |
List which it's content varies based on the supplied "endpoint" argument.
"POST https://reactome.org/ContentService/interactors/static/
molecules/details"
"POST https://reactome.org/ContentService/interactors/static/
molecules/summary"
"GET https://reactome.org/ContentService/interactors/static/
molecules/pathways"
Marc Gillespie, Bijay Jassal, Ralf Stephan, Marija Milacic, Karen Rothfels, Andrea Senff-Ribeiro, Johannes Griss, Cristoffer Sevilla, Lisa Matthews, Chuqiao Gong, Chuan Deng, Thawfeek Varusai, Eliot Ragueneau, Yusra Haider, Bruce May, Veronica Shamovsky, Joel Weiser, Timothy Brunson, Nasim Sanati, Liam Beckman, Xiang Shao, Antonio Fabregat, Konstantinos Sidiropoulos, Julieth Murillo, Guilherme Viteri, Justin Cook, Solomon Shorser, Gary Bader, Emek Demir, Chris Sander, Robin Haw, Guanming Wu, Lincoln Stein, Henning Hermjakob, Peter D’Eustachio, The reactome pathway knowledgebase 2022, Nucleic Acids Research, 2021;, kab1028, https://doi.org/10.1093/nar/gkab1028
Griss J, Viteri G, Sidiropoulos K, Nguyen V, Fabregat A, Hermjakob H. ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis. Mol Cell Proteomics. 2020 Sep 9. doi: 10.1074/mcp. PubMed PMID: 32907876.
Other "Reactome Content Service - Molecule Interactors":
rba_reactome_interactors_psicquic()
rba_reactome_interactors_static(proteins = "Q9BXM7-1", endpoint = "pathways", species = "Homo sapiens") rba_reactome_interactors_static(proteins = c("Q9BXM7-1", "Q13501"), endpoint = "details") rba_reactome_interactors_static(proteins = c("Q9BXM7-1", "Q13501"), endpoint = "summary")
rba_reactome_interactors_static(proteins = "Q9BXM7-1", endpoint = "pathways", species = "Homo sapiens") rba_reactome_interactors_static(proteins = c("Q9BXM7-1", "Q13501"), endpoint = "details") rba_reactome_interactors_static(proteins = c("Q9BXM7-1", "Q13501"), endpoint = "summary")
By providing an external identifier from a given resource, you can retrieve a list of pathways/reactions that include your supplied ID.
rba_reactome_mapping(id, resource, map_to, species = "Homo sapiens", ...)
rba_reactome_mapping(id, resource, map_to, species = "Homo sapiens", ...)
id |
Molecule's external Identifier |
resource |
What is the resource of your supplied ID? see: Reactome External Identifiers |
map_to |
Either "pathways" or "reactions". |
species |
Numeric or Character: NCBI Taxonomy identifier (Human
is 9606), species name (e.g. "Homo sapiens") or Reactome DbId (e.g
Homo sapiens is 48887). See
|
... |
rbioapi option(s). See |
Data frame where each row is a pathway/reaction and columns are pertinent information.
"GET https://reactome.org/ContentService/data/mapping/{resource}/
{identifier}/pathways"
"GET https://reactome.org/ContentService/data/mapping/{resource}/
{identifier}/reactions"
Marc Gillespie, Bijay Jassal, Ralf Stephan, Marija Milacic, Karen Rothfels, Andrea Senff-Ribeiro, Johannes Griss, Cristoffer Sevilla, Lisa Matthews, Chuqiao Gong, Chuan Deng, Thawfeek Varusai, Eliot Ragueneau, Yusra Haider, Bruce May, Veronica Shamovsky, Joel Weiser, Timothy Brunson, Nasim Sanati, Liam Beckman, Xiang Shao, Antonio Fabregat, Konstantinos Sidiropoulos, Julieth Murillo, Guilherme Viteri, Justin Cook, Solomon Shorser, Gary Bader, Emek Demir, Chris Sander, Robin Haw, Guanming Wu, Lincoln Stein, Henning Hermjakob, Peter D’Eustachio, The reactome pathway knowledgebase 2022, Nucleic Acids Research, 2021;, kab1028, https://doi.org/10.1093/nar/gkab1028
Griss J, Viteri G, Sidiropoulos K, Nguyen V, Fabregat A, Hermjakob H. ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis. Mol Cell Proteomics. 2020 Sep 9. doi: 10.1074/mcp. PubMed PMID: 32907876.
rba_reactome_mapping(id = "PTEN", resource = "UniProt", map_to = "reactions", species = 9606)
rba_reactome_mapping(id = "PTEN", resource = "UniProt", map_to = "reactions", species = 9606)
Reactome incorporate manually curated human reactions and PANTHER's protein homology data to Computationally infer events in other eukaryotic species.
rba_reactome_orthology(event_ids, species_dbid, ...)
rba_reactome_orthology(event_ids, species_dbid, ...)
event_ids |
Human Reactome event ID(s) to retrieve their orthologous events. |
species_dbid |
Reactome database ID (DbId) of the target species. (e.g
Mus musculus is 48892). See
|
... |
rbioapi option(s). See |
In version 73 (11 June 2020), using an orthology-based approach,
Homo sapiens events was projected to 18,654 orthologous pathways (with
81,835 orthologous proteins) in 15 non-human species.
See
Reactome Computationally Inferred Events for more information.
List containing found Orthologous event(s) in your supplied species and their pertinent information.
"POST https://reactome.org/ContentService/data/orthologies/ids/ species/{speciesId}"
Marc Gillespie, Bijay Jassal, Ralf Stephan, Marija Milacic, Karen Rothfels, Andrea Senff-Ribeiro, Johannes Griss, Cristoffer Sevilla, Lisa Matthews, Chuqiao Gong, Chuan Deng, Thawfeek Varusai, Eliot Ragueneau, Yusra Haider, Bruce May, Veronica Shamovsky, Joel Weiser, Timothy Brunson, Nasim Sanati, Liam Beckman, Xiang Shao, Antonio Fabregat, Konstantinos Sidiropoulos, Julieth Murillo, Guilherme Viteri, Justin Cook, Solomon Shorser, Gary Bader, Emek Demir, Chris Sander, Robin Haw, Guanming Wu, Lincoln Stein, Henning Hermjakob, Peter D’Eustachio, The reactome pathway knowledgebase 2022, Nucleic Acids Research, 2021;, kab1028, https://doi.org/10.1093/nar/gkab1028
Griss J, Viteri G, Sidiropoulos K, Nguyen V, Fabregat A, Hermjakob H. ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis. Mol Cell Proteomics. 2020 Sep 9. doi: 10.1074/mcp. PubMed PMID: 32907876.
rba_reactome_orthology(event_ids = c("R-HSA-6799198", " R-HSA-72764"), species_dbid = 49633)
rba_reactome_orthology(event_ids = c("R-HSA-6799198", " R-HSA-72764"), species_dbid = 49633)
This function will retrieve a list of complexes and sets that Your supplied entity ID participates in (e.g. as a complex component, reaction output).
rba_reactome_participant_of(entity_id, ...)
rba_reactome_participant_of(entity_id, ...)
entity_id |
Reactome's entity ID. |
... |
rbioapi option(s). See |
List of Reactome database Entities which Your supplied ID is a participant in them.
"GET https://reactome.org/ContentService/data/entity/{id}/componentOf"
Marc Gillespie, Bijay Jassal, Ralf Stephan, Marija Milacic, Karen Rothfels, Andrea Senff-Ribeiro, Johannes Griss, Cristoffer Sevilla, Lisa Matthews, Chuqiao Gong, Chuan Deng, Thawfeek Varusai, Eliot Ragueneau, Yusra Haider, Bruce May, Veronica Shamovsky, Joel Weiser, Timothy Brunson, Nasim Sanati, Liam Beckman, Xiang Shao, Antonio Fabregat, Konstantinos Sidiropoulos, Julieth Murillo, Guilherme Viteri, Justin Cook, Solomon Shorser, Gary Bader, Emek Demir, Chris Sander, Robin Haw, Guanming Wu, Lincoln Stein, Henning Hermjakob, Peter D’Eustachio, The reactome pathway knowledgebase 2022, Nucleic Acids Research, 2021;, kab1028, https://doi.org/10.1093/nar/gkab1028
Griss J, Viteri G, Sidiropoulos K, Nguyen V, Fabregat A, Hermjakob H. ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis. Mol Cell Proteomics. 2020 Sep 9. doi: 10.1074/mcp. PubMed PMID: 32907876.
Other "Reactome Content Service - Physical Entity Queries":
rba_reactome_complex_list()
,
rba_reactome_complex_subunits()
,
rba_reactome_entity_other_forms()
rba_reactome_participant_of(entity_id = "R-HSA-199420")
rba_reactome_participant_of(entity_id = "R-HSA-199420")
Participating molecules in a Reactome comprises set of 'Physical Entity' and 'Reference Entities' class objects. Use this function to retrieve all, only 'Physical Entity' or only 'Reference Entities' participants of given event.
rba_reactome_participants( event_id, only_physical_entities = FALSE, only_reference_entities = FALSE, ... )
rba_reactome_participants( event_id, only_physical_entities = FALSE, only_reference_entities = FALSE, ... )
event_id |
Reactome event's database ID (DbId) or Stable ID (StId). |
only_physical_entities |
Logical: If TRUe, only participating 'Physical Entities' will be returned. |
only_reference_entities |
Logical: If TRUe, only participating 'Reference Entities' will be returned. |
... |
rbioapi option(s). See |
A 'Physical Entity' Instance could include an individual molecule,
a multi-molecular complex or a set of molecule forming a group based on
some characteristics. a single molecule can have different 'Physical Entity'
instances based on it's associated attributes. For example, IgK Ig kappa
chain, has two 'Physical Entity' instances; one, with ID
"R-HSA-197041" refers to the secreted antibody protein to the
extra-cellular region; And the second one is with ID
"R-HSA-2038819" and refers to the plasma-membrane-integrated form of
the antibody protein.
To make it possible to link multiple 'Physical Entity' instances of a
molecule, Reactome uses a data class named "'Reference Entities'"
which correspond to the invariant attribute of a molecule. for example,
both of the above-mentioned 'Physical Entities' see a 'Reference Entities'
named
"UniProt:P01834 IGKC.
See Reactome
Data Model for more information about the data model and Physical
Entities.
List with the participant of your supplied Event ID. A Data frame if only physical or 'Reference Entities' was requested.
"GET https://reactome.org/ContentService/data/participants/{id}"
"GET https://reactome.org/ContentService/data/participants/{id}/
participatingPhysicalEntities"
"GET https://reactome.org/ContentService/data/participants/{id}/
referenceEntities"
Marc Gillespie, Bijay Jassal, Ralf Stephan, Marija Milacic, Karen Rothfels, Andrea Senff-Ribeiro, Johannes Griss, Cristoffer Sevilla, Lisa Matthews, Chuqiao Gong, Chuan Deng, Thawfeek Varusai, Eliot Ragueneau, Yusra Haider, Bruce May, Veronica Shamovsky, Joel Weiser, Timothy Brunson, Nasim Sanati, Liam Beckman, Xiang Shao, Antonio Fabregat, Konstantinos Sidiropoulos, Julieth Murillo, Guilherme Viteri, Justin Cook, Solomon Shorser, Gary Bader, Emek Demir, Chris Sander, Robin Haw, Guanming Wu, Lincoln Stein, Henning Hermjakob, Peter D’Eustachio, The reactome pathway knowledgebase 2022, Nucleic Acids Research, 2021;, kab1028, https://doi.org/10.1093/nar/gkab1028
Griss J, Viteri G, Sidiropoulos K, Nguyen V, Fabregat A, Hermjakob H. ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis. Mol Cell Proteomics. 2020 Sep 9. doi: 10.1074/mcp. PubMed PMID: 32907876.
rba_reactome_participants("R-HSA-5682012") rba_reactome_participants("R-HSA-5682012", only_physical_entities = TRUE) rba_reactome_participants("R-HSA-5682012", only_reference_entities = TRUE)
rba_reactome_participants("R-HSA-5682012") rba_reactome_participants("R-HSA-5682012", only_physical_entities = TRUE) rba_reactome_participants("R-HSA-5682012", only_reference_entities = TRUE)
A Reactome Event could be comprised of other events (meaning, a pathway that include other pathways itself). Use this function to recursively return all the events which reside downstream of your supplied event ID (or an attribute of that events).
rba_reactome_pathways_events(event_id, attribute_name = NULL, ...)
rba_reactome_pathways_events(event_id, attribute_name = NULL, ...)
event_id |
Reactome event's database ID (DbId) or Stable ID (StId). |
attribute_name |
An attribute of the events to be returned instead of the whole events. see Reactome Data Schema: Event for available options. |
... |
rbioapi option(s). See |
By Reactome's definition, Events are the building blocks of biological processes and could be of two main classes: "Pathway" or "Reaction-like events". The events are organized in a hierarchical structure; and each event could be child or parent to another event; The hierarchy will always begin with a "Top level pathway" event. Also note that a given event could be part of more that one hierarchies.
Data frame where each row is a contained event and columns are event's attributes. If an "attribute_name" argument was supplied, a character vector will be returned.
"GET https://reactome.org/ContentService/data/pathway/{id}/
containedEvents"
"GET https://reactome.org/ContentService/data/pathway/{id}/
containedEvents/{attributeName}"
Marc Gillespie, Bijay Jassal, Ralf Stephan, Marija Milacic, Karen Rothfels, Andrea Senff-Ribeiro, Johannes Griss, Cristoffer Sevilla, Lisa Matthews, Chuqiao Gong, Chuan Deng, Thawfeek Varusai, Eliot Ragueneau, Yusra Haider, Bruce May, Veronica Shamovsky, Joel Weiser, Timothy Brunson, Nasim Sanati, Liam Beckman, Xiang Shao, Antonio Fabregat, Konstantinos Sidiropoulos, Julieth Murillo, Guilherme Viteri, Justin Cook, Solomon Shorser, Gary Bader, Emek Demir, Chris Sander, Robin Haw, Guanming Wu, Lincoln Stein, Henning Hermjakob, Peter D’Eustachio, The reactome pathway knowledgebase 2022, Nucleic Acids Research, 2021;, kab1028, https://doi.org/10.1093/nar/gkab1028
Griss J, Viteri G, Sidiropoulos K, Nguyen V, Fabregat A, Hermjakob H. ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis. Mol Cell Proteomics. 2020 Sep 9. doi: 10.1074/mcp. PubMed PMID: 32907876.
Other "Reactome Content Service - Pathway Related Queries":
rba_reactome_pathways_low()
,
rba_reactome_pathways_top()
rba_reactome_pathways_events(event_id = "R-HSA-5673001") rba_reactome_pathways_events(event_id = "R-HSA-5673001", attribute_name = "displayName")
rba_reactome_pathways_events(event_id = "R-HSA-5673001") rba_reactome_pathways_events(event_id = "R-HSA-5673001", attribute_name = "displayName")
Use this function to search the event hierarchy and retrieve a list of all lower level pathways (non TopLevelPathway class) that contain a given 'Physical Entity' or Event. See "Arguments section" on how to modify your search.
rba_reactome_pathways_low( entity_id, with_diagram = FALSE, all_forms = FALSE, species = NULL, ... )
rba_reactome_pathways_low( entity_id, with_diagram = FALSE, all_forms = FALSE, species = NULL, ... )
entity_id |
The entity that should exist in the pathways. |
with_diagram |
Logical: only include pathways with diagram? |
all_forms |
Logical: should other variants of your supplied entity_id
be considered? (e.g. same molecule but in different compartment,
secretory form etc.) see |
species |
(optional) Numeric or Character: confine your search to a
specific species by providing it's NCBI Taxonomy identifier
(Human Taxonomy ID is 9606) or species name (e.g. "Homo sapiens").
See |
... |
rbioapi option(s). See |
Data frame where each row is a pathway that contains your supplied entity and columns are pertinent information.
"GET https://reactome.org/ContentService/data/pathways/low/entity/{id}"
"GET https://reactome.org/ContentService/data/pathways/low/diagram/
entity/{id}"
"GET https://reactome.org/ContentService/data/pathways/low/diagram/
entity/{id}/allForms"
Marc Gillespie, Bijay Jassal, Ralf Stephan, Marija Milacic, Karen Rothfels, Andrea Senff-Ribeiro, Johannes Griss, Cristoffer Sevilla, Lisa Matthews, Chuqiao Gong, Chuan Deng, Thawfeek Varusai, Eliot Ragueneau, Yusra Haider, Bruce May, Veronica Shamovsky, Joel Weiser, Timothy Brunson, Nasim Sanati, Liam Beckman, Xiang Shao, Antonio Fabregat, Konstantinos Sidiropoulos, Julieth Murillo, Guilherme Viteri, Justin Cook, Solomon Shorser, Gary Bader, Emek Demir, Chris Sander, Robin Haw, Guanming Wu, Lincoln Stein, Henning Hermjakob, Peter D’Eustachio, The reactome pathway knowledgebase 2022, Nucleic Acids Research, 2021;, kab1028, https://doi.org/10.1093/nar/gkab1028
Griss J, Viteri G, Sidiropoulos K, Nguyen V, Fabregat A, Hermjakob H. ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis. Mol Cell Proteomics. 2020 Sep 9. doi: 10.1074/mcp. PubMed PMID: 32907876.
Other "Reactome Content Service - Pathway Related Queries":
rba_reactome_pathways_events()
,
rba_reactome_pathways_top()
rba_reactome_pathways_low(entity_id = "R-HSA-199420") rba_reactome_pathways_low(entity_id = "R-HSA-199420", with_diagram = TRUE) rba_reactome_pathways_low(entity_id = "R-HSA-199420", with_diagram = TRUE, all_forms = TRUE)
rba_reactome_pathways_low(entity_id = "R-HSA-199420") rba_reactome_pathways_low(entity_id = "R-HSA-199420", with_diagram = TRUE) rba_reactome_pathways_low(entity_id = "R-HSA-199420", with_diagram = TRUE, all_forms = TRUE)
This function will Return a list of all pathways with the class "TopLevelPathway" which are annotated in your supplied species.
rba_reactome_pathways_top(species, ...)
rba_reactome_pathways_top(species, ...)
species |
Numeric or Character: NCBI Taxonomy identifier (Human Taxonomy
ID is 9606.) or species name (e.g. "Homo sapiens"). See
|
... |
rbioapi option(s). See |
Reactome's Events hierarchy for any specie will begin with pathways with class "TopLevelPathway" (e.g. "Immune System", "Metabolism of proteins"). further down in the event's hierarchy tree, each TopLevelPathway has has other events itself (e.g. "Adaptive immune system", "Innate immune system"). Based on the chosen pathway, the hierarchy tree would typically goes further down.
Data frame where each row is a Top Level Pathway and columns are pertinent information.
"GET https://reactome.org/ContentService/data/pathways/top/{species}"
Marc Gillespie, Bijay Jassal, Ralf Stephan, Marija Milacic, Karen Rothfels, Andrea Senff-Ribeiro, Johannes Griss, Cristoffer Sevilla, Lisa Matthews, Chuqiao Gong, Chuan Deng, Thawfeek Varusai, Eliot Ragueneau, Yusra Haider, Bruce May, Veronica Shamovsky, Joel Weiser, Timothy Brunson, Nasim Sanati, Liam Beckman, Xiang Shao, Antonio Fabregat, Konstantinos Sidiropoulos, Julieth Murillo, Guilherme Viteri, Justin Cook, Solomon Shorser, Gary Bader, Emek Demir, Chris Sander, Robin Haw, Guanming Wu, Lincoln Stein, Henning Hermjakob, Peter D’Eustachio, The reactome pathway knowledgebase 2022, Nucleic Acids Research, 2021;, kab1028, https://doi.org/10.1093/nar/gkab1028
Griss J, Viteri G, Sidiropoulos K, Nguyen V, Fabregat A, Hermjakob H. ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis. Mol Cell Proteomics. 2020 Sep 9. doi: 10.1074/mcp. PubMed PMID: 32907876.
Other "Reactome Content Service - Pathway Related Queries":
rba_reactome_pathways_events()
,
rba_reactome_pathways_low()
rba_reactome_pathways_top(species = 9606) rba_reactome_pathways_top(species = "Saccharomyces cerevisiae")
rba_reactome_pathways_top(species = 9606) rba_reactome_pathways_top(species = "Saccharomyces cerevisiae")
A person by his identifiers
rba_reactome_people_id( person_id, authored_pathways = FALSE, publications = FALSE, attribute_name = NULL, ... )
rba_reactome_people_id( person_id, authored_pathways = FALSE, publications = FALSE, attribute_name = NULL, ... )
person_id |
Reactome database ID (DbId) or ORCHID ID |
authored_pathways |
Logical: Only return Pathway list authored by the person? (default = FALSE) |
publications |
Logical: Only return publications list authored by the person? (Defalt = FALSE) |
attribute_name |
(optional) A Reactome person attribute to return only. see Reactome Data Schema: person for available options. |
... |
rbioapi option(s). See |
List containing the requested informations of your supplied person.
"GET https://reactome.org/ContentService"
Marc Gillespie, Bijay Jassal, Ralf Stephan, Marija Milacic, Karen Rothfels, Andrea Senff-Ribeiro, Johannes Griss, Cristoffer Sevilla, Lisa Matthews, Chuqiao Gong, Chuan Deng, Thawfeek Varusai, Eliot Ragueneau, Yusra Haider, Bruce May, Veronica Shamovsky, Joel Weiser, Timothy Brunson, Nasim Sanati, Liam Beckman, Xiang Shao, Antonio Fabregat, Konstantinos Sidiropoulos, Julieth Murillo, Guilherme Viteri, Justin Cook, Solomon Shorser, Gary Bader, Emek Demir, Chris Sander, Robin Haw, Guanming Wu, Lincoln Stein, Henning Hermjakob, Peter D’Eustachio, The reactome pathway knowledgebase 2022, Nucleic Acids Research, 2021;, kab1028, https://doi.org/10.1093/nar/gkab1028
Griss J, Viteri G, Sidiropoulos K, Nguyen V, Fabregat A, Hermjakob H. ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis. Mol Cell Proteomics. 2020 Sep 9. doi: 10.1074/mcp. PubMed PMID: 32907876.
Other "Reactome Content Service - Person Queries":
rba_reactome_people_name()
rba_reactome_people_id("391309") rba_reactome_people_id(person_id = "391309", authored_pathways = TRUE)
rba_reactome_people_id("391309") rba_reactome_people_id(person_id = "391309", authored_pathways = TRUE)
Using this function you can query people by partially matching or exact name and retrieve a list of matching people in Reactome.
rba_reactome_people_name(person_name, exact_match = FALSE, ...)
rba_reactome_people_name(person_name, exact_match = FALSE, ...)
person_name |
first and last name of the person |
exact_match |
Logical: should the supplied name be considered as an exact match? (default = FALSE) |
... |
rbioapi option(s). See |
List where each element is a search hit contains the person's information.
"GET https://reactome.org/ContentService/data/people/name/{name}"
"GET https://reactome.org/ContentService/data/people/name/{name}/exact"
Marc Gillespie, Bijay Jassal, Ralf Stephan, Marija Milacic, Karen Rothfels, Andrea Senff-Ribeiro, Johannes Griss, Cristoffer Sevilla, Lisa Matthews, Chuqiao Gong, Chuan Deng, Thawfeek Varusai, Eliot Ragueneau, Yusra Haider, Bruce May, Veronica Shamovsky, Joel Weiser, Timothy Brunson, Nasim Sanati, Liam Beckman, Xiang Shao, Antonio Fabregat, Konstantinos Sidiropoulos, Julieth Murillo, Guilherme Viteri, Justin Cook, Solomon Shorser, Gary Bader, Emek Demir, Chris Sander, Robin Haw, Guanming Wu, Lincoln Stein, Henning Hermjakob, Peter D’Eustachio, The reactome pathway knowledgebase 2022, Nucleic Acids Research, 2021;, kab1028, https://doi.org/10.1093/nar/gkab1028
Griss J, Viteri G, Sidiropoulos K, Nguyen V, Fabregat A, Hermjakob H. ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis. Mol Cell Proteomics. 2020 Sep 9. doi: 10.1074/mcp. PubMed PMID: 32907876.
Other "Reactome Content Service - Person Queries":
rba_reactome_people_id()
rba_reactome_people_name("Jupe") rba_reactome_people_name("Steve Jupe", exact_match = TRUE)
rba_reactome_people_name("Jupe") rba_reactome_people_name("Steve Jupe", exact_match = TRUE)
Using this Comprehensive function, You can Retrieve any object from Reactome knowledge-base
rba_reactome_query( ids, enhanced = FALSE, map = FALSE, attribute_name = NULL, ... )
rba_reactome_query( ids, enhanced = FALSE, map = FALSE, attribute_name = NULL, ... )
ids |
A single or Multiple database IDs (DbId), Stable IDs (StId) or a mixture of both. |
enhanced |
Logical: (Default = FALSE) If 'TRUE' more information on the supplied entry will be returned. (You can set this argument to 'TRUE' Only when you supply a single ID). |
map |
(Default = FALSE) Should the supplied IDs be mapped? This argument will only be considered when you supply multiple IDs. (e.g. when you supply previous version of stable identifiers.) |
attribute_name |
(Optional) Only Return an Attribute of the supplied Database Object. (You can use this argument Only when you supply a single ID) |
... |
rbioapi option(s). See |
List containing your query outputs.
"POST https://reactome.org/ContentService/data/query/ids"
"POST https://reactome.org/ContentService/data/query/ids/map"
"GET https://reactome.org/ContentService/data/query/{id}"
"GET https://reactome.org/ContentService/data/query/enhanced/{id}"
"GET https://reactome.org/ContentService/data/query/{id}/{attributeName}"
Marc Gillespie, Bijay Jassal, Ralf Stephan, Marija Milacic, Karen Rothfels, Andrea Senff-Ribeiro, Johannes Griss, Cristoffer Sevilla, Lisa Matthews, Chuqiao Gong, Chuan Deng, Thawfeek Varusai, Eliot Ragueneau, Yusra Haider, Bruce May, Veronica Shamovsky, Joel Weiser, Timothy Brunson, Nasim Sanati, Liam Beckman, Xiang Shao, Antonio Fabregat, Konstantinos Sidiropoulos, Julieth Murillo, Guilherme Viteri, Justin Cook, Solomon Shorser, Gary Bader, Emek Demir, Chris Sander, Robin Haw, Guanming Wu, Lincoln Stein, Henning Hermjakob, Peter D’Eustachio, The reactome pathway knowledgebase 2022, Nucleic Acids Research, 2021;, kab1028, https://doi.org/10.1093/nar/gkab1028
Griss J, Viteri G, Sidiropoulos K, Nguyen V, Fabregat A, Hermjakob H. ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis. Mol Cell Proteomics. 2020 Sep 9. doi: 10.1074/mcp. PubMed PMID: 32907876.
rba_reactome_query(ids = c("8953958", "11982506", "R-ALL-9649879")) rba_reactome_query(ids = "R-HSA-9656256", enhanced = TRUE) rba_reactome_query(ids = "8863054", attribute_name = "displayName")
rba_reactome_query(ids = c("8953958", "11982506", "R-ALL-9649879")) rba_reactome_query(ids = "R-HSA-9656256", enhanced = TRUE) rba_reactome_query(ids = "8863054", attribute_name = "displayName")
Use this function to retrieve a table of Available species in Reactome.
rba_reactome_species(only_main = FALSE, ...)
rba_reactome_species(only_main = FALSE, ...)
only_main |
Logical: If set to TRUE, will only return species which have either manually-curated or computationally inferred pathways. |
... |
rbioapi option(s). See |
Data frame where each row is a species and columns are pertinent information.
"GET https://reactome.org/ContentService/data/species/all"
"GET https://reactome.org/ContentService/data/species/main"
Marc Gillespie, Bijay Jassal, Ralf Stephan, Marija Milacic, Karen Rothfels, Andrea Senff-Ribeiro, Johannes Griss, Cristoffer Sevilla, Lisa Matthews, Chuqiao Gong, Chuan Deng, Thawfeek Varusai, Eliot Ragueneau, Yusra Haider, Bruce May, Veronica Shamovsky, Joel Weiser, Timothy Brunson, Nasim Sanati, Liam Beckman, Xiang Shao, Antonio Fabregat, Konstantinos Sidiropoulos, Julieth Murillo, Guilherme Viteri, Justin Cook, Solomon Shorser, Gary Bader, Emek Demir, Chris Sander, Robin Haw, Guanming Wu, Lincoln Stein, Henning Hermjakob, Peter D’Eustachio, The reactome pathway knowledgebase 2022, Nucleic Acids Research, 2021;, kab1028, https://doi.org/10.1093/nar/gkab1028
Griss J, Viteri G, Sidiropoulos K, Nguyen V, Fabregat A, Hermjakob H. ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis. Mol Cell Proteomics. 2020 Sep 9. doi: 10.1074/mcp. PubMed PMID: 32907876.
rba_reactome_species() rba_reactome_species(only_main = TRUE)
rba_reactome_species() rba_reactome_species(only_main = TRUE)
Returns the current version of Reactome database.
rba_reactome_version(...)
rba_reactome_version(...)
... |
rbioapi option(s). See |
Character string containing the version of Reactome database.
"GET https://reactome.org/ContentService/data/database/version"
Marc Gillespie, Bijay Jassal, Ralf Stephan, Marija Milacic, Karen Rothfels, Andrea Senff-Ribeiro, Johannes Griss, Cristoffer Sevilla, Lisa Matthews, Chuqiao Gong, Chuan Deng, Thawfeek Varusai, Eliot Ragueneau, Yusra Haider, Bruce May, Veronica Shamovsky, Joel Weiser, Timothy Brunson, Nasim Sanati, Liam Beckman, Xiang Shao, Antonio Fabregat, Konstantinos Sidiropoulos, Julieth Murillo, Guilherme Viteri, Justin Cook, Solomon Shorser, Gary Bader, Emek Demir, Chris Sander, Robin Haw, Guanming Wu, Lincoln Stein, Henning Hermjakob, Peter D’Eustachio, The reactome pathway knowledgebase 2022, Nucleic Acids Research, 2021;, kab1028, https://doi.org/10.1093/nar/gkab1028
Griss J, Viteri G, Sidiropoulos K, Nguyen V, Fabregat A, Hermjakob H. ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis. Mol Cell Proteomics. 2020 Sep 9. doi: 10.1074/mcp. PubMed PMID: 32907876.
rba_reactome_version()
rba_reactome_version()
Use this function To retrieve a list of Reactome ReferenceEntity associated to your supplied Cross Reference (i.e. External) ID.
rba_reactome_xref(xref_id, ...)
rba_reactome_xref(xref_id, ...)
xref_id |
molecule's cross-reference (external) identifier. |
... |
rbioapi option(s). See |
Reactome cross-references external database's identifiers to it's database
Entries named ReferenceEntity, which resembles the invariant aspect of
a molecule. Thus there is a one-to-many relationship between Reactome's
ReferenceEntity object and the molecule's ID in external databases,
which in Reactome's terms is called Cross Reference.
See rba_reactome_participants
's "Details section"
to learn more about how Reactome classifies molecules.
List containing the ReferenceEntity corresponding to your supplied cross-reference (external) ID.
"GET https://reactome.org/ContentService/references/mapping/{identifier}"
Marc Gillespie, Bijay Jassal, Ralf Stephan, Marija Milacic, Karen Rothfels, Andrea Senff-Ribeiro, Johannes Griss, Cristoffer Sevilla, Lisa Matthews, Chuqiao Gong, Chuan Deng, Thawfeek Varusai, Eliot Ragueneau, Yusra Haider, Bruce May, Veronica Shamovsky, Joel Weiser, Timothy Brunson, Nasim Sanati, Liam Beckman, Xiang Shao, Antonio Fabregat, Konstantinos Sidiropoulos, Julieth Murillo, Guilherme Viteri, Justin Cook, Solomon Shorser, Gary Bader, Emek Demir, Chris Sander, Robin Haw, Guanming Wu, Lincoln Stein, Henning Hermjakob, Peter D’Eustachio, The reactome pathway knowledgebase 2022, Nucleic Acids Research, 2021;, kab1028, https://doi.org/10.1093/nar/gkab1028
Griss J, Viteri G, Sidiropoulos K, Nguyen V, Fabregat A, Hermjakob H. ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis. Mol Cell Proteomics. 2020 Sep 9. doi: 10.1074/mcp. PubMed PMID: 32907876.
rba_reactome_xref("CD40") rba_reactome_xref("ENSP00000361350")
rba_reactome_xref("CD40") rba_reactome_xref("ENSP00000361350")
STRING cross-reference the proteins with several databases (see "Details" section). By providing your input set o proteins (and optionally background or universe protein set), you can use this function to retrieve full set of terms (annotations) pertinent to your input proteins in each database, among with information for each term.
rba_string_annotations( ids, species = NULL, allow_pubmed = FALSE, split_df = TRUE, ... )
rba_string_annotations( ids, species = NULL, allow_pubmed = FALSE, split_df = TRUE, ... )
ids |
Your protein ID(s). It is strongly recommended to supply
STRING IDs. See |
species |
Numeric: NCBI Taxonomy identifier; Human Taxonomy ID is 9606. (Recommended, but optional if your input is less than 100 IDs.) |
allow_pubmed |
logical: (default = FALSE) PubMed usually assigns a large number of reference publications to each protein. In order to reduce the output size, PubMed's results will be excluded from the results, unless stated otherwise by setting this argument to TRUE. |
split_df |
(logical, default = TRUE), If TRUE, instead of one data frame, results from different categories will be split into multiple data frames based on their 'category'. |
... |
rbioapi option(s). See |
STRING currently maps to and retrieve enrichment results based on Gene
Ontology (GO), KEGG pathways, UniProt Keywords, PubMed publications, Pfam
domains, InterPro domains, and SMART domains.
Note that this function will return a full list of the terms containing
your supplied proteins. To perform enrichment and only retrieve a enriched
subset of the terms, use rba_string_enrichment
.
A data frame which every row is an assigned terms and the columns are the terms category, description, number of genes, and other pertinent information.
"POST https://string-db.org/api/{output_format}/functional_annotation? identifiers={your_identifiers}&{optional_parameters}"
Damian Szklarczyk, Rebecca Kirsch, Mikaela Koutrouli, Katerina Nastou, Farrokh Mehryary, Radja Hachilif, Annika L Gable, Tao Fang, Nadezhda T Doncheva, Sampo Pyysalo, Peer Bork, Lars J Jensen, Christian von Mering, The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest, Nucleic Acids Research, Volume 51, Issue D1, 6 January 2023, Pages D638–D646, https://doi.org/10.1093/nar/gkac1000
rba_string_map_ids,
rba_string_enrichment,
rba_string_enrichment_image
Other "STRING":
rba_string_enrichment()
,
rba_string_enrichment_image()
,
rba_string_enrichment_ppi()
,
rba_string_homology_inter()
,
rba_string_homology_intra()
,
rba_string_interaction_partners()
,
rba_string_interactions_network()
,
rba_string_map_ids()
,
rba_string_network_image()
,
rba_string_version()
rba_string_annotations(ids = "TP53", species = 9606)
rba_string_annotations(ids = "TP53", species = 9606)
STRING cross-reference the proteins with several databases (see "Details"
section). By providing your input set o proteins (and optionally
background or universe protein set), you can use this function to
perform enrichment test and retrieve a list of enriched terms in each
database, among with pertinent information for each term.
Use rba_string_enrichment_image
to retrieve the analysis
results as a plot.
rba_string_enrichment( ids, species = NULL, background = NULL, split_df = TRUE, ... )
rba_string_enrichment( ids, species = NULL, background = NULL, split_df = TRUE, ... )
ids |
Your protein ID(s). It is strongly recommended to supply
STRING IDs. See |
species |
Numeric: NCBI Taxonomy identifier; Human Taxonomy ID is 9606. (Recommended, but optional if your input is less than 100 IDs.) |
background |
character vector: A set of STRING protein IDs
to be used as the statistical background (or universe) when computing
P-value for the terms. Only STRING IDs are acceptable. (See
|
split_df |
(logical, default = TRUE), If TRUE, instead of one data frame, results from different categories will be split into multiple data frames based on their 'category'. |
... |
rbioapi option(s). See |
STRING currently maps to and retrieve enrichment results based on Gene
Ontology (GO), KEGG pathways, UniProt Keywords, PubMed publications, Pfam
domains, InterPro domains, and SMART domains.
Note that this function will only return the enriched terms pertinent
to your proteins that have a p-value lesser than 0.1. To retrieve a full
list of the terms -unfiltered by enrichment p-values-, use
rba_string_annotations
.
A list of data frames which every row is an enriched terms with p-value smaller than 0.1 and the columns are the terms category, description, number of genes, p-value, fdr and other pertinent information.
"POST https://string-db.org/api/{output_format}/enrichment?identifiers= {your_identifiers}&{optional_parameters}"
Damian Szklarczyk, Rebecca Kirsch, Mikaela Koutrouli, Katerina Nastou, Farrokh Mehryary, Radja Hachilif, Annika L Gable, Tao Fang, Nadezhda T Doncheva, Sampo Pyysalo, Peer Bork, Lars J Jensen, Christian von Mering, The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest, Nucleic Acids Research, Volume 51, Issue D1, 6 January 2023, Pages D638–D646, https://doi.org/10.1093/nar/gkac1000
rba_string_map_ids,
rba_string_annotations,
rba_string_enrichment_image
Other "STRING":
rba_string_annotations()
,
rba_string_enrichment_image()
,
rba_string_enrichment_ppi()
,
rba_string_homology_inter()
,
rba_string_homology_intra()
,
rba_string_interaction_partners()
,
rba_string_interactions_network()
,
rba_string_map_ids()
,
rba_string_network_image()
,
rba_string_version()
Other "Enrichment/Over-representation":
rba_enrichr()
,
rba_mieaa_enrich()
,
rba_panther_enrich()
,
rba_reactome_analysis()
,
rba_string_enrichment_image()
rba_string_enrichment(ids = c("TP53", "TNF", "EGFR"), species = 9606)
rba_string_enrichment(ids = c("TP53", "TNF", "EGFR"), species = 9606)
In addition to performing enrichment analysis, STRING allows you to also
visualize the analysis results. Use rba_string_enrichment
to retrieve the analysis results as a data frame.
rba_string_enrichment_image( ids, species, category = "Process", image_format = "image", save_image = TRUE, group_by_similarity = NULL, color_palette = "mint_blue", number_of_term_shown = 10, x_axis = "signal", ... )
rba_string_enrichment_image( ids, species, category = "Process", image_format = "image", save_image = TRUE, group_by_similarity = NULL, color_palette = "mint_blue", number_of_term_shown = 10, x_axis = "signal", ... )
ids |
Your protein ID(s). It is strongly recommended to supply
STRING IDs. See |
species |
Numeric: NCBI Taxonomy identifier; Human Taxonomy ID is 9606. |
category |
The terms set to use to perform enrichment analysis. valid values are (See details for more info): "Process" (default), "Function", "Component", "Keyword", "KEGG", "RCTM", "HPO", "MPO", "DPO", "WPO", "ZPO", "FYPO", "Pfam", "SMART", "InterPro", "PMID", "NetworkNeighborAL", "COMPARTMENTS", "TISSUES", "DISEASES", or "WikiPathways" |
image_format |
one of:
|
save_image |
Logical or Character:
|
group_by_similarity |
Jackard index treshold to visually group the related terms. Valid values are between 0.1 to 1 with increment of 0.1. Default value is NULL (i.e. no grouping). |
color_palette |
Color pallet to code FDR values. Valid values are: "mint_blue" (default), "lime_emerald", "green_blue", "peach_purple", "straw_navy", or "yellow_pink" |
number_of_term_shown |
(default: 10) Maximum number of results to include in the plot. |
x_axis |
The variable to show on the x axis and rank the results based on it. Valid values are: "signal" (default), "strength", "FDR", or "gene_count" |
... |
rbioapi option(s). See |
Available values for category are as follow. Default value is "Process".
Process: Biological Process (Gene Ontology)
Function: Molecular Function (Gene Ontology)
Component: Cellular Component (Gene Ontology)
Keyword: Annotated Keywords (UniProt)
KEGG: KEGG Pathways
RCTM: Reactome Pathways
HPO: Human Phenotype (Monarch)
MPO: The Mammalian Phenotype Ontology (Monarch)
DPO: Drosophila Phenotype (Monarch)
WPO: C. elegans Phenotype Ontology (Monarch)
ZPO: Zebrafish Phenotype Ontology (Monarch)
FYPO: Fission Yeast Phenotype Ontology (Monarch)
Pfam: Protein Domains (Pfam)
SMART: Protein Domains (SMART)
InterPro: Protein Domains and Features (InterPro)
PMID: Reference Publications (PubMed)
NetworkNeighborAL: Local Network Cluster (STRING)
COMPARTMENTS: Subcellular Localization (COMPARTMENTS)
TISSUES: Tissue Expression (TISSUES)
DISEASES: Disease-gene Associations (DISEASES)
WikiPathways: WikiPathways
A plot summarizing the enrichment results, which can be PNG or SVG depending on the inputs.
"POST https://string-db.org/api/{output_format}/enrichmentfigure"
Damian Szklarczyk, Rebecca Kirsch, Mikaela Koutrouli, Katerina Nastou, Farrokh Mehryary, Radja Hachilif, Annika L Gable, Tao Fang, Nadezhda T Doncheva, Sampo Pyysalo, Peer Bork, Lars J Jensen, Christian von Mering, The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest, Nucleic Acids Research, Volume 51, Issue D1, 6 January 2023, Pages D638–D646, https://doi.org/10.1093/nar/gkac1000
rba_string_map_ids,
rba_string_enrichment,
rba_string_annotations
Other "STRING":
rba_string_annotations()
,
rba_string_enrichment()
,
rba_string_enrichment_ppi()
,
rba_string_homology_inter()
,
rba_string_homology_intra()
,
rba_string_interaction_partners()
,
rba_string_interactions_network()
,
rba_string_map_ids()
,
rba_string_network_image()
,
rba_string_version()
Other "Enrichment/Over-representation":
rba_enrichr()
,
rba_mieaa_enrich()
,
rba_panther_enrich()
,
rba_reactome_analysis()
,
rba_string_enrichment()
## Not run: rba_string_enrichment_image( ids = c("TP53", "TNF", "EGFR"), species = 9606, category = "KEGG" ) ## End(Not run) ## Not run: rba_string_enrichment_image( ids = c("TP53", "TNF", "EGFR"), species = 9606, x_axis = "strength", number_of_term_shown = 20 ) ## End(Not run) ## Not run: rba_string_enrichment_image( ids = c("TP53", "TNF", "EGFR"), species = 9606, color_palette = "straw_navy" ) ## End(Not run)
## Not run: rba_string_enrichment_image( ids = c("TP53", "TNF", "EGFR"), species = 9606, category = "KEGG" ) ## End(Not run) ## Not run: rba_string_enrichment_image( ids = c("TP53", "TNF", "EGFR"), species = 9606, x_axis = "strength", number_of_term_shown = 20 ) ## End(Not run) ## Not run: rba_string_enrichment_image( ids = c("TP53", "TNF", "EGFR"), species = 9606, color_palette = "straw_navy" ) ## End(Not run)
Even when there is no annotation for your input proteins, STRING can Compare your Given proteins interactions pattern with the background proteome-wide interaction distribution to determine if your given set of proteins are functionally related.
rba_string_enrichment_ppi( ids, species = NULL, required_score = NULL, background = NULL, ... )
rba_string_enrichment_ppi( ids, species = NULL, required_score = NULL, background = NULL, ... )
ids |
Your protein ID(s). It is strongly recommended to supply
STRING IDs. See |
species |
Numeric: NCBI Taxonomy identifier; Human Taxonomy ID is 9606. (Recommended, but optional if your input is less than 100 IDs.) |
required_score |
Numeric: A minimum of interaction score for an interaction to be included in the image. if not supplied, the threshold will be applied by STRING Based in the network. (low Confidence = 150, Medium Confidence = 400, High Confidence = 700, Highest confidence = 900) |
background |
character vector: A set of STRING protein IDs
to be used as the background proteome. Only STRING IDs are acceptable.
(See |
... |
rbioapi option(s). See |
A list with protein-protein interaction enrichment results.
"POST https://string-db.org/api/{output_format}/ppi_enrichment?identifiers= {your_identifiers}&{optional_parameters}"
Damian Szklarczyk, Rebecca Kirsch, Mikaela Koutrouli, Katerina Nastou, Farrokh Mehryary, Radja Hachilif, Annika L Gable, Tao Fang, Nadezhda T Doncheva, Sampo Pyysalo, Peer Bork, Lars J Jensen, Christian von Mering, The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest, Nucleic Acids Research, Volume 51, Issue D1, 6 January 2023, Pages D638–D646, https://doi.org/10.1093/nar/gkac1000
Other "STRING":
rba_string_annotations()
,
rba_string_enrichment()
,
rba_string_enrichment_image()
,
rba_string_homology_inter()
,
rba_string_homology_intra()
,
rba_string_interaction_partners()
,
rba_string_interactions_network()
,
rba_string_map_ids()
,
rba_string_network_image()
,
rba_string_version()
rba_string_enrichment_ppi(ids = c("p53", "BRCA1", "cdk2", "Q99835", "CDC42", "CDK1", "KIF23", "PLK1", "RAC2", "RACGAP1"), species = 9606)
rba_string_enrichment_ppi(ids = c("p53", "BRCA1", "cdk2", "Q99835", "CDC42", "CDK1", "KIF23", "PLK1", "RAC2", "RACGAP1"), species = 9606)
Using this function, you can retrieve highest Smith-Waterman bit scores among your input proteins and proteins in every other STRING species (e.g. the closest homologous protein of your input protein in other species). Bit Scores serve as similarity scores between protein sequence; And, according to STRING documentations, as a proxy for protein homology.
rba_string_homology_inter(ids, species = NULL, species_b = NULL, ...)
rba_string_homology_inter(ids, species = NULL, species_b = NULL, ...)
ids |
Your protein ID(s). It is strongly recommended to supply
STRING IDs. See |
species |
Numeric: NCBI Taxonomy identifier of your input proteins; Human Taxonomy ID is 9606. (Recommended, but optional if your input is less than 100 IDs.) |
species_b |
(optional) Numeric: one or more NCBI Taxonomy identifiers of species to limit the closets homologous proteins search. |
... |
rbioapi option(s). See |
Note that this function will return the highest similarity score hits of
your given protein(s) and their closets homologous proteins in other
species. to retrieve similarity scores of different proteins within the
same species see rba_string_homology_intra
.
Similarity matrix is imported -by STRING- from:
Similarity Matrix of
Proteins (SIMAP)
A data frame with Your input proteins and it's closest homologous proteins among all other (or a defined) STRING species.
"POST https://string-db.org/api/{output-format}/homology_best? identifiers={your_identifiers}"
Damian Szklarczyk, Rebecca Kirsch, Mikaela Koutrouli, Katerina Nastou, Farrokh Mehryary, Radja Hachilif, Annika L Gable, Tao Fang, Nadezhda T Doncheva, Sampo Pyysalo, Peer Bork, Lars J Jensen, Christian von Mering, The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest, Nucleic Acids Research, Volume 51, Issue D1, 6 January 2023, Pages D638–D646, https://doi.org/10.1093/nar/gkac1000
rba_string_map_ids, rba_string_homology_intra
Other "STRING":
rba_string_annotations()
,
rba_string_enrichment()
,
rba_string_enrichment_image()
,
rba_string_enrichment_ppi()
,
rba_string_homology_intra()
,
rba_string_interaction_partners()
,
rba_string_interactions_network()
,
rba_string_map_ids()
,
rba_string_network_image()
,
rba_string_version()
rba_string_homology_inter(ids = "p53", species = 9606, species_b = 7070) rba_string_homology_inter(ids = "ENSP00000269305", species = 9606)
rba_string_homology_inter(ids = "p53", species = 9606, species_b = 7070) rba_string_homology_inter(ids = "ENSP00000269305", species = 9606)
Using this function, you can retrieve the Smith-Waterman bit scores among proteins of the same species. Bit Scores serve as similarity scores between protein sequence; And, according to STRING documentations, as a proxy for protein homology.
rba_string_homology_intra(ids, species = NULL, ...)
rba_string_homology_intra(ids, species = NULL, ...)
ids |
Your protein ID(s). It is strongly recommended to supply
STRING IDs. See |
species |
Numeric: NCBI Taxonomy identifier; Human Taxonomy ID is 9606. (Recommended, but optional if your input is less than 100 IDs.) |
... |
rbioapi option(s). See |
Note that this function will retrieve similarity scores of different
proteins "within the same species". To Get a similarity scores of a given
protein and it's closets homologous proteins in other species, see
rba_string_homology_inter
.
Similarity matrix is imported -by STRING- from:
Similarity Matrix of
Proteins (SIMAP)
A data frame with bit scores between your supplied proteins and their self-hit. To Reduce the transferred data, STRING returns only one half of the similarity matrix; This will not pose a problem because similarity matrix is symmetrical.
"POST https://string-db.org/api/{output-format}/homology?identifiers= {your_identifiers}"
Damian Szklarczyk, Rebecca Kirsch, Mikaela Koutrouli, Katerina Nastou, Farrokh Mehryary, Radja Hachilif, Annika L Gable, Tao Fang, Nadezhda T Doncheva, Sampo Pyysalo, Peer Bork, Lars J Jensen, Christian von Mering, The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest, Nucleic Acids Research, Volume 51, Issue D1, 6 January 2023, Pages D638–D646, https://doi.org/10.1093/nar/gkac1000
rba_string_map_ids, rba_string_homology_inter
Other "STRING":
rba_string_annotations()
,
rba_string_enrichment()
,
rba_string_enrichment_image()
,
rba_string_enrichment_ppi()
,
rba_string_homology_inter()
,
rba_string_interaction_partners()
,
rba_string_interactions_network()
,
rba_string_map_ids()
,
rba_string_network_image()
,
rba_string_version()
rba_string_homology_intra(ids = c("CDK1", "CDK2"), species = 9606)
rba_string_homology_intra(ids = c("CDK1", "CDK2"), species = 9606)
This function will retrieve all the STRING interactions which include your
proteins as one party of the interaction. (e.g. interaction between your
proteins and every other STRING proteins.)
Given the size of STRING database, this function could return a very
long results. See "Arguments" section for information on how to filter
the interactions.
rba_string_interaction_partners( ids, species = NULL, required_score = NULL, network_type = "functional", limit = NULL, ... )
rba_string_interaction_partners( ids, species = NULL, required_score = NULL, network_type = "functional", limit = NULL, ... )
ids |
Your protein ID(s). It is strongly recommended to supply
STRING IDs. See |
species |
Numeric: NCBI Taxonomy identifier; Human Taxonomy ID is 9606. (Recommended, but optional if your input is less than 100 IDs.) |
required_score |
Numeric: A minimum of interaction score for an interaction to be included in the image. if not supplied, the threshold will be applied by STRING Based in the network. (low Confidence = 150, Medium Confidence = 400, High Confidence = 700, Highest confidence = 900) |
network_type |
should be one of:
|
limit |
Limit the number returned interaction partners per each of your input proteins. (e.g. Number of the most confident interaction partner to return per each input protein.) |
... |
rbioapi option(s). See |
Note that this function will retrieve the interactions between your input
proteins and every other STRING proteins. To retrieve the interaction
among your input protein-set, see
rba_string_interactions_network
.
A data frame which each row is a network interaction and the columns contains interactor information and interaction scores.
"POST https://string-db.org/api/{output-format}/ interaction_partners?identifiers={your_identifiers}&{optional_parameters}"
Damian Szklarczyk, Rebecca Kirsch, Mikaela Koutrouli, Katerina Nastou, Farrokh Mehryary, Radja Hachilif, Annika L Gable, Tao Fang, Nadezhda T Doncheva, Sampo Pyysalo, Peer Bork, Lars J Jensen, Christian von Mering, The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest, Nucleic Acids Research, Volume 51, Issue D1, 6 January 2023, Pages D638–D646, https://doi.org/10.1093/nar/gkac1000
rba_string_map_ids, rba_string_interactions_network
Other "STRING":
rba_string_annotations()
,
rba_string_enrichment()
,
rba_string_enrichment_image()
,
rba_string_enrichment_ppi()
,
rba_string_homology_inter()
,
rba_string_homology_intra()
,
rba_string_interactions_network()
,
rba_string_map_ids()
,
rba_string_network_image()
,
rba_string_version()
rba_string_interaction_partners(ids = c("9606.ENSP00000269305", "9606.ENSP00000398698", "9606.ENSP00000275493"), network_type = "functional") rba_string_interaction_partners(ids = "9606.ENSP00000269305", species = 9606, required_score = 700)
rba_string_interaction_partners(ids = c("9606.ENSP00000269305", "9606.ENSP00000398698", "9606.ENSP00000275493"), network_type = "functional") rba_string_interaction_partners(ids = "9606.ENSP00000269305", species = 9606, required_score = 700)
This function will retrieve Sting interaction pairs among your input protein ids, with the combined score and separate score for each STRING score channels. You can further expand your network to a defined size by providing "add_node" parameter.
rba_string_interactions_network( ids, species = NULL, required_score = NULL, add_nodes = NULL, network_type = "functional", use_query_labels = FALSE, ... )
rba_string_interactions_network( ids, species = NULL, required_score = NULL, add_nodes = NULL, network_type = "functional", use_query_labels = FALSE, ... )
ids |
Your protein IDs. It is strongly recommended to supply
STRING IDs. See |
species |
Numeric: NCBI Taxonomy identifier; Human Taxonomy ID is 9606. (Recommended, but optional if your input is less than 100 IDs.) |
required_score |
Numeric: A minimum of interaction score for an interaction to be included in the image. if not supplied, the threshold will be applied by STRING Based in the network. (low Confidence = 150, Medium Confidence = 400, High Confidence = 700, Highest confidence = 900) |
add_nodes |
Numeric: Number of neighboring proteins to be added to the network. If none supplied by the user, this argument value will depend on the number of supplied "ids" argument:
|
network_type |
should be one of:
|
use_query_labels |
Logical: (Default = FALSE) Use the names supplied with the 'ids' argument as the nodes labels instead of STRING's default ones. |
... |
rbioapi option(s). See |
Note that this function will return interactions between your set of
supplied proteins, or at most, expand the interaction network by the
given parameters. TO retrieve a list of all possible interacting proteins
with your given input, see
rba_string_interaction_partners
.
A data frame which each row is a network interaction and the columns contains interactor information and interaction scores:
stringId_A: STRING identifier (protein A)
stringId_B:STRING identifier (protein B)
preferredName_A: common protein name (protein A)
preferredName_B: common protein name (protein B)
ncbiTaxonId: NCBI taxon identifier
score: combined score
nscore: gene neighborhood score
fscore: gene fusion score
pscore: phylogenetic profile score
ascore: co-expression score
escore: experimental score
dscore: database score
tscore: textmining score
"POST https://string-db.org/api/{output-format}/network?identifiers= {your_identifiers}&{optional_parameters}"
Damian Szklarczyk, Rebecca Kirsch, Mikaela Koutrouli, Katerina Nastou, Farrokh Mehryary, Radja Hachilif, Annika L Gable, Tao Fang, Nadezhda T Doncheva, Sampo Pyysalo, Peer Bork, Lars J Jensen, Christian von Mering, The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest, Nucleic Acids Research, Volume 51, Issue D1, 6 January 2023, Pages D638–D646, https://doi.org/10.1093/nar/gkac1000
rba_string_map_ids, rba_string_interaction_partners
Other "STRING":
rba_string_annotations()
,
rba_string_enrichment()
,
rba_string_enrichment_image()
,
rba_string_enrichment_ppi()
,
rba_string_homology_inter()
,
rba_string_homology_intra()
,
rba_string_interaction_partners()
,
rba_string_map_ids()
,
rba_string_network_image()
,
rba_string_version()
rba_string_interactions_network(ids = c("9606.ENSP00000269305", "9606.ENSP00000398698", "9606.ENSP00000275493"), network_type = "functional") rba_string_interactions_network(ids = c("9606.ENSP00000269305", "9606.ENSP00000398698", "9606.ENSP00000275493"), species = 9606, add_nodes = 10)
rba_string_interactions_network(ids = c("9606.ENSP00000269305", "9606.ENSP00000398698", "9606.ENSP00000275493"), network_type = "functional") rba_string_interactions_network(ids = c("9606.ENSP00000269305", "9606.ENSP00000398698", "9606.ENSP00000275493"), species = 9606, add_nodes = 10)
This function Calls STRING's API to Convert a set of identifiers to STRING Identifiers. Although You can call STRING services with a variety of common identifiers, It is recommended by STRING's documentations that you first map Your Protein/genes IDs to STRING IDs and then proceed with other STRING's functions.
rba_string_map_ids(ids, species = NULL, echo_query = FALSE, limit = NULL, ...)
rba_string_map_ids(ids, species = NULL, echo_query = FALSE, limit = NULL, ...)
ids |
Your Common gene/protein Identifier(s) to be mapped. |
species |
Numeric: NCBI Taxonomy identifier; Human Taxonomy ID is 9606. (Recommended, but optional if your input is less than 100 IDs.) |
echo_query |
(default = FALSE) Include your input IDs as a column of the results. |
limit |
(Numeric, Optional) A limit on the number of matches per input ID. The output are sorted to have the best matches first. |
... |
rbioapi option(s). See |
A data frame with the mapped STRING IDs and other pertinent information.
"POST https://string-db.org/api/{output-format}/get_string_ids?identifiers= {your_identifiers}&{optional_parameters}"
Damian Szklarczyk, Rebecca Kirsch, Mikaela Koutrouli, Katerina Nastou, Farrokh Mehryary, Radja Hachilif, Annika L Gable, Tao Fang, Nadezhda T Doncheva, Sampo Pyysalo, Peer Bork, Lars J Jensen, Christian von Mering, The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest, Nucleic Acids Research, Volume 51, Issue D1, 6 January 2023, Pages D638–D646, https://doi.org/10.1093/nar/gkac1000
Other "STRING":
rba_string_annotations()
,
rba_string_enrichment()
,
rba_string_enrichment_image()
,
rba_string_enrichment_ppi()
,
rba_string_homology_inter()
,
rba_string_homology_intra()
,
rba_string_interaction_partners()
,
rba_string_interactions_network()
,
rba_string_network_image()
,
rba_string_version()
rba_string_map_ids(ids = c("TP53", "TNF", "EGFR"), species = 9606)
rba_string_map_ids(ids = c("TP53", "TNF", "EGFR"), species = 9606)
Depending on that you supplied a single protein ID or more than one protein ID, this function will produce a static image of the interaction networks among your input proteins or/and with other proteins. See the "Arguments" section to learn more about how you can modify the network image.
rba_string_network_image( ids, image_format = "image", save_image = TRUE, species = NULL, add_color_nodes = NULL, add_white_nodes = NULL, required_score = NULL, network_flavor = "evidence", network_type = "functional", hide_node_labels = FALSE, use_query_labels = FALSE, hide_disconnected_nodes = FALSE, hide_structure_pics = FALSE, flat_nodes = FALSE, node_labels_center = FALSE, node_labels_font_size = 12, ... )
rba_string_network_image( ids, image_format = "image", save_image = TRUE, species = NULL, add_color_nodes = NULL, add_white_nodes = NULL, required_score = NULL, network_flavor = "evidence", network_type = "functional", hide_node_labels = FALSE, use_query_labels = FALSE, hide_disconnected_nodes = FALSE, hide_structure_pics = FALSE, flat_nodes = FALSE, node_labels_center = FALSE, node_labels_font_size = 12, ... )
ids |
Your protein ID(s). It is strongly recommended to supply
STRING IDs. See |
image_format |
one of:
|
save_image |
Logical or Character:
|
species |
Numeric: NCBI Taxonomy identifier; Human Taxonomy ID is 9606. (Recommended, but optional if your input is less than 100 IDs.) |
add_color_nodes |
Numeric: The number of colored nodes (queried proteins and first shell of interactors) to be added. |
add_white_nodes |
Numeric: The number of white nodes (second shell of interactors) to be added after colored nodes. |
required_score |
Numeric (Between 0 to 1000): A minimum of interaction score for an interaction to be included in the image. if not supplied, the threshold will be applied by STRING Based in the network. (low Confidence = 150, Medium Confidence = 400, High Confidence = 700, Highest confidence = 900) |
network_flavor |
The style of network edges, should be one of:
|
network_type |
should be one of:
|
hide_node_labels |
Logical: (Default = FALSE) Hide proteins names from the image |
use_query_labels |
Logical: (Default = FALSE) Use the names supplied with the 'ids' argument as the nodes labels instead of STRING's default ones. |
hide_disconnected_nodes |
Logical: (Default = FALSE) Hide proteins that are not connected to any other proteins from the image |
hide_structure_pics |
Logical: (Default = FALSE) Hide protein's structure picture from inside the bubbles |
flat_nodes |
Logical: (Default = FALSE) Make the nodes design flat instead of the default 3D design |
node_labels_center |
Logical: (Default = FALSE) Position the protein names labels center aligned on the nodes |
node_labels_font_size |
Numeric (Between 5 to 50, Default = 12) Font size of the protein nodes labels |
... |
rbioapi option(s). See |
A network images which can be PNG or SVG depending on the inputs.
"POST https://string-db.org/api/{output-format}/network?identifiers= {your_identifiers}&{optional_parameters}"
Damian Szklarczyk, Rebecca Kirsch, Mikaela Koutrouli, Katerina Nastou, Farrokh Mehryary, Radja Hachilif, Annika L Gable, Tao Fang, Nadezhda T Doncheva, Sampo Pyysalo, Peer Bork, Lars J Jensen, Christian von Mering, The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest, Nucleic Acids Research, Volume 51, Issue D1, 6 January 2023, Pages D638–D646, https://doi.org/10.1093/nar/gkac1000
Other "STRING":
rba_string_annotations()
,
rba_string_enrichment()
,
rba_string_enrichment_image()
,
rba_string_enrichment_ppi()
,
rba_string_homology_inter()
,
rba_string_homology_intra()
,
rba_string_interaction_partners()
,
rba_string_interactions_network()
,
rba_string_map_ids()
,
rba_string_version()
## Not run: rba_string_network_image(ids = c("9606.ENSP00000269305", "9606.ENSP00000398698", "9606.ENSP00000275493"), network_type = "functional", save_image = FALSE) ## End(Not run) ## Not run: rba_string_network_image(ids = c("TP53", "TNF", "EGFR"), species = 9606, save_image = TRUE) ## End(Not run) ## Not run: rba_string_network_image(ids = "9606.ENSP00000269305", image_format = "highres_image", save_image = file.path(getwd(), "TP53_network.png")) ## End(Not run)
## Not run: rba_string_network_image(ids = c("9606.ENSP00000269305", "9606.ENSP00000398698", "9606.ENSP00000275493"), network_type = "functional", save_image = FALSE) ## End(Not run) ## Not run: rba_string_network_image(ids = c("TP53", "TNF", "EGFR"), species = 9606, save_image = TRUE) ## End(Not run) ## Not run: rba_string_network_image(ids = "9606.ENSP00000269305", image_format = "highres_image", save_image = file.path(getwd(), "TP53_network.png")) ## End(Not run)
Get STRING version and stable Address that this package currently uses.
rba_string_version(...)
rba_string_version(...)
... |
rbioapi option(s). See |
Note that STRING releases new version at approximately 2 years cycle. Nevertheless, to insure reproducibility, STRING dedicates a stable address for each release. Thus you can always reproduce research and results obtained via a certain STRING version. If the version that rbioapi returns is outdated, Kindly contact me.
A list with STRING version and stable address.
"GET https://string-db.org/api/{output_format}/version"
Damian Szklarczyk, Rebecca Kirsch, Mikaela Koutrouli, Katerina Nastou, Farrokh Mehryary, Radja Hachilif, Annika L Gable, Tao Fang, Nadezhda T Doncheva, Sampo Pyysalo, Peer Bork, Lars J Jensen, Christian von Mering, The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest, Nucleic Acids Research, Volume 51, Issue D1, 6 January 2023, Pages D638–D646, https://doi.org/10.1093/nar/gkac1000
Other "STRING":
rba_string_annotations()
,
rba_string_enrichment()
,
rba_string_enrichment_image()
,
rba_string_enrichment_ppi()
,
rba_string_homology_inter()
,
rba_string_homology_intra()
,
rba_string_interaction_partners()
,
rba_string_interactions_network()
,
rba_string_map_ids()
,
rba_string_network_image()
rba_string_version()
rba_string_version()
UniProt maps Antigenic features from different sources to the proteins' sequences. Using this function, you can retrieve all the Antigenic features that has been map to a given UniProt protein's sequence.
rba_uniprot_antigens(accession, ...)
rba_uniprot_antigens(accession, ...)
accession |
|
... |
rbioapi option(s). See |
A list containing the Antigenic features of your supplied UniProt protein's sequence.
"GET https://www.ebi.ac.uk/proteins/api/antigen/{accession}"
The UniProt Consortium , UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Research, 2024;, gkae1010, https://doi.org/10.1093/nar/gkae1010
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "UniProt - Antigen":
rba_uniprot_antigens_search()
rba_uniprot_antigens("P04626")
rba_uniprot_antigens("P04626")
UniProt maps Antigenic (Antibody-binding) features from different sources to the proteins' sequences. Using this function, you can search for Antigenic sequences that has been map to UniProt proteins. You may also refine your search with modifiers such as score etc. See "Arguments section" for more information.
rba_uniprot_antigens_search( accession = NULL, antigen_sequence = NULL, antigen_id = NULL, ensembl_id = NULL, match_score = NULL, ... )
rba_uniprot_antigens_search( accession = NULL, antigen_sequence = NULL, antigen_id = NULL, ensembl_id = NULL, match_score = NULL, ... )
accession |
UniProtKB primary or secondary accession(s). You can supply up to 100 accession numbers. |
antigen_sequence |
Protein sequence in the antigenic site. |
antigen_id |
Human Protein Atlas (HPA) antigen ID. You can supply up to 20 IDs. |
ensembl_id |
Ensembl Stable Transcript ID. You can supply up to 20 IDs. |
match_score |
(Numeric) Minimum alignment score for the antigen sequence and the target protein sequence. |
... |
rbioapi option(s). See |
Note that this is a search function. Thus, you are not required to fill every argument; You may use whatever combinations of arguments you see fit for your query.
A list Where each element correspond to a UniProt protein (search hit) and Antigenic features are organized under the "features" sub-list.
"GET https://www.ebi.ac.uk/proteins/api/antigen"
The UniProt Consortium , UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Research, 2024;, gkae1010, https://doi.org/10.1093/nar/gkae1010
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "UniProt - Antigen":
rba_uniprot_antigens()
rba_uniprot_antigens_search(antigen_id = "HPA001060")
rba_uniprot_antigens_search(antigen_id = "HPA001060")
Using this function you can retrieve genomic Coordinates of a Protein by either providing the protein's UniProt accession or it's ID in a cross-reference database (Ensembl, CCDC, HGNC or RefSeq). You should supply either 'accession' alone or 'db_type' and 'db_id' together.
rba_uniprot_coordinates(accession = NULL, db_type = NULL, db_id = NULL, ...)
rba_uniprot_coordinates(accession = NULL, db_type = NULL, db_id = NULL, ...)
accession |
|
db_type |
cross-reference database name, Should be one of: "Ensembl", "CCDC", "HGNC" or "RefSeq". |
db_id |
Protein's ID in the cross-reference database |
... |
rbioapi option(s). See |
For more information about how UniProt imports and calculates genomic
coordinates data, see:
McGarvey, P. B., Nightingale, A., Luo, J., Huang, H., Martin, M. J.,
Wu, C., & UniProt Consortium (2019). UniProt genomic mapping for
deciphering functional effects of missense variants. Human mutation,
40(6), 694–705. https://doi.org/10.1002/humu.23738
A list with genome coordinates of your supplied protein.
"GET https://ebi.ac.uk/proteins/api/coordinates/{accession}"
"GET https://ebi.ac.uk/proteins/api/coordinates/{dbtype}:{dbid}"
The UniProt Consortium , UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Research, 2024;, gkae1010, https://doi.org/10.1093/nar/gkae1010
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "UniProt - Coordinates":
rba_uniprot_coordinates_location()
,
rba_uniprot_coordinates_location_genome()
,
rba_uniprot_coordinates_location_protein()
,
rba_uniprot_coordinates_search()
rba_uniprot_coordinates(accession = "P25942") rba_uniprot_coordinates(db_type = "HGNC", db_id = "CD40")
rba_uniprot_coordinates(accession = "P25942") rba_uniprot_coordinates(db_type = "HGNC", db_id = "CD40")
For more information about how UniProt imports and calculates genomic
coordinates data, see:
McGarvey, P. B., Nightingale, A., Luo, J., Huang, H., Martin, M. J.,
Wu, C., & UniProt Consortium (2019). UniProt genomic mapping for
deciphering functional effects of missense variants. Human mutation,
40(6), 694–705. https://doi.org/10.1002/humu.23738
rba_uniprot_coordinates_location( taxid, locations, in_range = TRUE, feature = FALSE, ... )
rba_uniprot_coordinates_location( taxid, locations, in_range = TRUE, feature = FALSE, ... )
taxid |
NIH-NCBI Taxon ID. |
locations |
genomic location formatted as: chromosome:start-end. (e.g. "Y:17100001-19600000"). If you omit chromosome, it will be interpreted as any chromosome (e.g. "1-10000"). |
in_range |
Only return proteins that are in range. |
feature |
(logical) Get features? |
... |
rbioapi option(s). See |
a list containing UniProt proteins which match the supplied genomic location and taxonomy ID.
"GET https://ebi.ac.uk/proteins/api/coordinates
/{taxonomy}/{locations}/feature"
"GET https://ebi.ac.uk/proteins/api/coordinates
/{taxonomy}/{locations}"
The UniProt Consortium , UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Research, 2024;, gkae1010, https://doi.org/10.1093/nar/gkae1010
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "UniProt - Coordinates":
rba_uniprot_coordinates()
,
rba_uniprot_coordinates_location_genome()
,
rba_uniprot_coordinates_location_protein()
,
rba_uniprot_coordinates_search()
rba_uniprot_coordinates_location(taxid = 9606, locations = "Y:17100001-19600000", in_range = TRUE) rba_uniprot_coordinates_location(taxid = 9606, locations = "20:39000001", in_range = FALSE)
rba_uniprot_coordinates_location(taxid = 9606, locations = "Y:17100001-19600000", in_range = TRUE) rba_uniprot_coordinates_location(taxid = 9606, locations = "20:39000001", in_range = FALSE)
Using this function you can retrieve genome coordinates of a given UniProt protein by providing Genome location position or range. You can either supply 'g_position' alone or supply 'g_start' and 'g_end' together.
rba_uniprot_coordinates_location_genome( taxid, chromosome, g_position = NULL, g_start = NULL, g_end = NULL, ... )
rba_uniprot_coordinates_location_genome( taxid, chromosome, g_position = NULL, g_start = NULL, g_end = NULL, ... )
taxid |
NIH-NCBI Taxon ID. You can supply up to 20 taxon IDs. |
chromosome |
(Character or Numeric): Chromosome name, e.g. 1, 20, X. |
g_position |
(numeric) Genome location position |
g_start |
(numeric) Genome location position start |
g_end |
(numeric) Genome location position end |
... |
rbioapi option(s). See |
For more information about how UniProt imports and calculates genomic
coordinates data, see:
McGarvey, P. B., Nightingale, A., Luo, J., Huang, H., Martin, M. J.,
Wu, C., & UniProt Consortium (2019). UniProt genomic mapping for
deciphering functional effects of missense variants. Human mutation,
40(6), 694–705. https://doi.org/10.1002/humu.23738
Genome coordinates of your supplied proteins.
"GET https://ebi.ac.uk/proteins/api/coordinates/glocation
/{accession}:{pPosition}"
"GET https://ebi.ac.uk/proteins/api/coordinates/glocation
/{accession}:{pStart}-{pEnd}"
The UniProt Consortium , UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Research, 2024;, gkae1010, https://doi.org/10.1093/nar/gkae1010
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "UniProt - Coordinates":
rba_uniprot_coordinates()
,
rba_uniprot_coordinates_location()
,
rba_uniprot_coordinates_location_protein()
,
rba_uniprot_coordinates_search()
rba_uniprot_coordinates_location_genome( taxid = 9606, chromosome = 11, g_position = 36573305)
rba_uniprot_coordinates_location_genome( taxid = 9606, chromosome = 11, g_position = 36573305)
Using this function you can retrieve genome coordinates of a given UniProt protein by providing protein position or position range. You can either supply 'p_position' alone or supply 'p_start' and 'p_end' together.
rba_uniprot_coordinates_location_protein( accession, p_position = NULL, p_start = NULL, p_end = NULL, ... )
rba_uniprot_coordinates_location_protein( accession, p_position = NULL, p_start = NULL, p_end = NULL, ... )
accession |
|
p_position |
(numeric) Protein sequence position |
p_start |
(numeric) Protein sequence position start |
p_end |
(numeric) Protein sequence position end |
... |
rbioapi option(s). See |
For more information about how UniProt imports and calculates genomic
coordinates data, see:
McGarvey, P. B., Nightingale, A., Luo, J., Huang, H., Martin, M. J.,
Wu, C., & UniProt Consortium (2019). UniProt genomic mapping for
deciphering functional effects of missense variants. Human mutation,
40(6), 694–705. https://doi.org/10.1002/humu.23738
Genome coordinates of your supplied proteins.
"GET https://ebi.ac.uk/proteins/api/coordinates/location
/{accession}:{pPosition}"
"GET https://ebi.ac.uk/proteins/api/coordinates/location
/{accession}:{pStart}-{pEnd}"
The UniProt Consortium , UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Research, 2024;, gkae1010, https://doi.org/10.1093/nar/gkae1010
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "UniProt - Coordinates":
rba_uniprot_coordinates()
,
rba_uniprot_coordinates_location()
,
rba_uniprot_coordinates_location_genome()
,
rba_uniprot_coordinates_search()
rba_uniprot_coordinates_location_protein(accession = "P25942", p_position = 1) rba_uniprot_coordinates_location_protein(accession = "P25942", p_start = 1, p_end = 277)
rba_uniprot_coordinates_location_protein(accession = "P25942", p_position = 1) rba_uniprot_coordinates_location_protein(accession = "P25942", p_start = 1, p_end = 277)
Use this function to search genomic coordinates of UniProt entries. You may also refine your search with modifiers such as chromosome, taxon id etc. See "Arguments section" for more information.
rba_uniprot_coordinates_search( accession = NULL, chromosome = NULL, ensembl_id = NULL, gene = NULL, protein = NULL, taxid = NULL, location = NULL, ... )
rba_uniprot_coordinates_search( accession = NULL, chromosome = NULL, ensembl_id = NULL, gene = NULL, protein = NULL, taxid = NULL, location = NULL, ... )
accession |
UniProtKB primary or secondary accession(s). You can supply up to 100 accession numbers. |
chromosome |
chromosome name, such as "X", "Y", 1, 20, etc. You can supply up to 20 values. |
ensembl_id |
Ensembl Stable gene ID, transcript ID or translation ID. You can supply up to 20 IDs. |
gene |
UniProt gene name(s). You can supply up to 20 gene names. |
protein |
|
taxid |
NIH-NCBI Taxon ID. You can supply up to 20 taxon IDs. |
location |
Genome location range such as "58205437-58219305" |
... |
rbioapi option(s). See |
Note that this is a search function. Thus, you are not required to fill
every argument; You may use whatever combinations of arguments you see
fit for your query.
For more information about how UniProt imports and calculates genomic
coordinates data, see:
McGarvey, P. B., Nightingale, A., Luo, J., Huang, H., Martin, M. J.,
Wu, C., & UniProt Consortium (2019). UniProt genomic mapping for
deciphering functional effects of missense variants. Human mutation,
40(6), 694–705. https://doi.org/10.1002/humu.23738
List where each element corresponds to one UniProt entity returned by your search query. The element itself is a sub-list containing that protein's coordinates information.
"GET https://ebi.ac.uk/proteins/api/coordinates"
The UniProt Consortium , UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Research, 2024;, gkae1010, https://doi.org/10.1093/nar/gkae1010
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "UniProt - Coordinates":
rba_uniprot_coordinates()
,
rba_uniprot_coordinates_location()
,
rba_uniprot_coordinates_location_genome()
,
rba_uniprot_coordinates_location_protein()
rba_uniprot_coordinates_search(taxid = 9606, chromosome = "y")
rba_uniprot_coordinates_search(taxid = 9606, chromosome = "y")
Use this function to retrieve epitope annotations linked to a UniProt entry.
rba_uniprot_epitope(accession, ...)
rba_uniprot_epitope(accession, ...)
accession |
|
... |
rbioapi option(s). See |
A list containing the UniProt epitope features details for the given accession.
"GET https://www.ebi.ac.uk/proteins/api/epitope/{accession}"
Other "UniProt - Epitopes":
rba_uniprot_epitope_search()
,
rba_uniprot_rna_edit()
rba_uniprot_epitope(accession = "P36222")
rba_uniprot_epitope(accession = "P36222")
Use this function to search epitope data associated to UniProt entities, using various criteria such as UniProt accession, epitope sequence, IEDB ID, and match score.
rba_uniprot_epitope_search( accession = NULL, epitope_sequence = NULL, iedb_id = NULL, match_score = NULL, ... )
rba_uniprot_epitope_search( accession = NULL, epitope_sequence = NULL, iedb_id = NULL, match_score = NULL, ... )
accession |
UniProtKB primary or secondary accession(s). You can supply up to 100 accession numbers. |
epitope_sequence |
(Character) Epitope's proteins sequence |
iedb_id |
(Numeric) EIDB epitope Identifier(s). You can supply up to 20 accession numbers. |
match_score |
Integer: Minimum alignment score for the antigen sequence and the target protein sequence. |
... |
rbioapi option(s). See |
A List where each element corresponds to one UniProt entity returned by your search query. The element itself is a sub-list containing all information that UniProt has about that entity.
"GET https://www.ebi.ac.uk/proteins/api/epitope"
Other "UniProt - Epitopes":
rba_uniprot_epitope()
,
rba_uniprot_rna_edit()
rba_uniprot_epitope_search(accession = c("Q84ZX5", "P36222")) rba_uniprot_epitope_search(epitope_sequence = "DKKCIEWEKAQHGA") rba_uniprot_epitope_search(iedb_id = 20354)
rba_uniprot_epitope_search(accession = c("Q84ZX5", "P36222")) rba_uniprot_epitope_search(epitope_sequence = "DKKCIEWEKAQHGA") rba_uniprot_epitope_search(iedb_id = 20354)
Use this function to retrieve sequence annotations (features) of a protein by it's UniProt accession.
rba_uniprot_features( accession, types = NULL, categories = NULL, location = NULL, ... )
rba_uniprot_features( accession, types = NULL, categories = NULL, location = NULL, ... )
accession |
|
types |
Sequence annotation (Features) types. accepted values are: "INIT_MET", "SIGNAL", "PROPEP", "TRANSIT", "CHAIN", "PEPTIDE", "TOPO_DOM", "TRANSMEM", "DOMAIN", "REPEAT", "CA_BIND", "ZN_FING", "DNA_BIND", "NP_BIND", "REGION", "COILED", "MOTIF", "COMPBIAS", "ACT_SITE", "METAL", "BINDING", "SITE", "NON_STD", "MOD_RES", "LIPID", "CARBOHYD", "DISULFID", "CROSSLNK", "VAR_SEQ", "VARIANT", "MUTAGEN", "UNSURE", "CONFLICT", "NON_CONS", "NON_TER", "HELIX", "TURN", "STRAND" and/or "INTRAMEM". You can supply up to 20 types. |
categories |
Sequence annotation (Features) categories (subsection). accepted values are: "MOLECULE_PROCESSING", "TOPOLOGY", "SEQUENCE_INFORMATION", "STRUCTURAL", "DOMAINS_AND_SITES", "PTM", "VARIANTS" and/or "MUTAGENESIS". You can supply up to 8 categories. |
location |
(character) Filter the features by the amino acid position in the sequence(s). Provide the range as a character string with the format "begin-end", e.g. "35-70" |
... |
rbioapi option(s). See |
A list in which you can find all of your given protein's sequence annotations in a sub-list named "features".
"GET https://www.ebi.ac.uk/proteins/api/features/{accession}"
The UniProt Consortium , UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Research, 2024;, gkae1010, https://doi.org/10.1093/nar/gkae1010
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "UniProt - Features":
rba_uniprot_features_search()
rba_uniprot_features("Q99616") rba_uniprot_features(accession = "Q99616", types = "DISULFID")
rba_uniprot_features("Q99616") rba_uniprot_features(accession = "Q99616", types = "DISULFID")
UniProt maintains sequence annotations (features) that describe regions in the protein sequence. Using this function, you can search and retrieve UniProt proteins' sequence annotations (features). you may also refine your search query with variety of modifiers.
rba_uniprot_features_search( accession = NULL, gene = NULL, exact_gene = NULL, protein = NULL, reviewed = NULL, organism = NULL, taxid = NULL, categories = NULL, types = NULL, ... )
rba_uniprot_features_search( accession = NULL, gene = NULL, exact_gene = NULL, protein = NULL, reviewed = NULL, organism = NULL, taxid = NULL, categories = NULL, types = NULL, ... )
accession |
UniProtKB primary or secondary accession(s). You can supply up to 100 accession numbers. |
gene |
UniProt gene name(s). You can supply up to 20 gene names. e.g. if you supply "CD40", "CD40 ligand" will also be included. |
exact_gene |
UniProt exact gene name(s). You can supply up to 20 exact gene names. e.g. if you supply "CD40", "CD40 ligand" will not be included in the results. |
protein |
|
reviewed |
Logical: If TRUE, only return "UniProtKB/Swiss-Prot" (reviewed) entries; If FALSE, only return TrEMBL (un-reviewed) entries. |
organism |
|
taxid |
NIH-NCBI Taxon ID. You can supply up to 20 taxon IDs. |
categories |
Sequence annotation (Features) categories (subsection). accepted values are: "MOLECULE_PROCESSING", "TOPOLOGY", "SEQUENCE_INFORMATION", "STRUCTURAL", "DOMAINS_AND_SITES", "PTM", "VARIANTS" and/or "MUTAGENESIS". You can supply up to 8 categories. |
types |
Sequence annotation (Features) types. accepted values are: "INIT_MET", "SIGNAL", "PROPEP", "TRANSIT", "CHAIN", "PEPTIDE", "TOPO_DOM", "TRANSMEM", "DOMAIN", "REPEAT", "CA_BIND", "ZN_FING", "DNA_BIND", "NP_BIND", "REGION", "COILED", "MOTIF", "COMPBIAS", "ACT_SITE", "METAL", "BINDING", "SITE", "NON_STD", "MOD_RES", "LIPID", "CARBOHYD", "DISULFID", "CROSSLNK", "VAR_SEQ", "VARIANT", "MUTAGEN", "UNSURE", "CONFLICT", "NON_CONS", "NON_TER", "HELIX", "TURN", "STRAND" and/or "INTRAMEM". You can supply up to 20 types. |
... |
rbioapi option(s). See |
Note that this is a search function. Thus, you are not required to fill
every argument; You may use whatever combinations of arguments you see
fit for your query.
UniProt Entries are grouped in two sections:
Reviewed(Swiss-Prot): Manually annotated records with information extracted from literature and curator-evaluated computational analysis.
Unreviewed (TrEMBL): Computationally analyzed records that await full manual annotation.
List where each element corresponds to one UniProt entity returned by your search query. The element itself is a sub-list containing all information that UniProt has about that entity.
"GET https://www.ebi.ac.uk/proteins/api/features"
The UniProt Consortium , UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Research, 2024;, gkae1010, https://doi.org/10.1093/nar/gkae1010
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "UniProt - Features":
rba_uniprot_features()
rba_uniprot_features_search(accession = "Q99616") rba_uniprot_features_search(gene = "cd40") rba_uniprot_features_search(gene = "cd40 ligand") rba_uniprot_features_search(gene = "cd40", reviewed = TRUE) rba_uniprot_features_search(accession = "Q99616", categories = c("MOLECULE_PROCESSING", "TOPOLOGY")) rba_uniprot_features_search(accession = "Q99616", types = "DISULFID")
rba_uniprot_features_search(accession = "Q99616") rba_uniprot_features_search(gene = "cd40") rba_uniprot_features_search(gene = "cd40 ligand") rba_uniprot_features_search(gene = "cd40", reviewed = TRUE) rba_uniprot_features_search(accession = "Q99616", categories = c("MOLECULE_PROCESSING", "TOPOLOGY")) rba_uniprot_features_search(accession = "Q99616", types = "DISULFID")
Using this function you can retrieve gene-centrics data. For more information, see What are proteomes? and Automatic gene-centric isoform mapping for eukaryotic reference proteome entries..
rba_uniprot_genecentric(accession, ...)
rba_uniprot_genecentric(accession, ...)
accession |
|
... |
rbioapi option(s). See |
A list containing information of Gene-Centric proteins.
"GET https://ebi.ac.uk/proteins/api/genecentric/{accession}"
The UniProt Consortium , UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Research, 2024;, gkae1010, https://doi.org/10.1093/nar/gkae1010
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "UniProt - Proteomes":
rba_uniprot_genecentric_search()
,
rba_uniprot_proteomes()
,
rba_uniprot_proteomes_search()
rba_uniprot_genecentric("P29965")
rba_uniprot_genecentric("P29965")
Using this function you can search UniProt for available gene-centrics from proteomes. For more information, see What are proteomes? and Automatic gene-centric isoform mapping for eukaryotic reference proteome entries. You may also refine your search with modifiers upid, accession and gene. See "Arguments section" for more information.
rba_uniprot_genecentric_search(upid = NULL, accession = NULL, gene = NULL, ...)
rba_uniprot_genecentric_search(upid = NULL, accession = NULL, gene = NULL, ...)
upid |
UniProt Proteome identifier (UPID). You can supply up to 100 UPIDs. |
accession |
UniProtKB primary or secondary accession(s). You can supply up to 100 accession numbers. |
gene |
unique gene identifier(s) found in MOD, Ensembl, Ensembl Genomes, OLN, ORF or UniProt Gene Name. |
... |
rbioapi option(s). See |
Note that this is a search function. Thus, you are not required to fill every argument; You may use whatever combinations of arguments you see fit for your query.
a list containing gene-centric proteins search hits.
"GET https://ebi.ac.uk/proteins/api/genecentric"
The UniProt Consortium , UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Research, 2024;, gkae1010, https://doi.org/10.1093/nar/gkae1010
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "UniProt - Proteomes":
rba_uniprot_genecentric()
,
rba_uniprot_proteomes()
,
rba_uniprot_proteomes_search()
rba_uniprot_genecentric_search(accession = "P59594") rba_uniprot_genecentric_search(gene = "Spike") rba_uniprot_genecentric_search(upid = "UP000000354")
rba_uniprot_genecentric_search(accession = "P59594") rba_uniprot_genecentric_search(gene = "Spike") rba_uniprot_genecentric_search(upid = "UP000000354")
UniProt describes the effects of mutations in proteins' amino acid sequence on the biological properties of the protein, cell or the organism. Using this function, you can get the Mutagenesis description that has been mapped to a given UniProt protein.
rba_uniprot_mutagenesis(accession, location = NULL, ...)
rba_uniprot_mutagenesis(accession, location = NULL, ...)
accession |
|
location |
A valid amino acid range (e.g. 10-25) within the sequence range of the given proein. |
... |
rbioapi option(s). See |
A list containing the mutagenesis description of your supplied UniProt protein's sequence.
"GET https://www.ebi.ac.uk/proteins/api/mutagenesis/{accession}"
The UniProt Consortium , UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Research, 2024;, gkae1010, https://doi.org/10.1093/nar/gkae1010
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "UniProt - Mutagenesis":
rba_uniprot_mutagenesis_search()
rba_uniprot_mutagenesis(accession = "P0DTC2", location = "300-400")
rba_uniprot_mutagenesis(accession = "P0DTC2", location = "300-400")
UniProt describes the effects of mutations in proteins' amino acid sequence on the biological properties of the protein, cell or the organism. Using this function, you can search for mutagenesis description in UniProt proteins. You may also refine your search. See "Arguments section" for more information.
rba_uniprot_mutagenesis_search( accession = NULL, taxid = NULL, db_id = NULL, ... )
rba_uniprot_mutagenesis_search( accession = NULL, taxid = NULL, db_id = NULL, ... )
accession |
UniProtKB primary or secondary accession(s). You can supply up to 100 accession numbers. |
taxid |
NIH-NCBI Taxon ID. You can supply up to 20 taxon IDs. |
db_id |
The ID in a Cross-reference (external) database. You can supply up to 20 values. |
... |
rbioapi option(s). See |
Note that this is a search function. Thus, you are not required to fill every argument; You may use whatever combinations of arguments you see fit for your query.
A list Where each element correspond to a UniProt protein (search hit) and mutagenesis description are organized under the "features" sub-list.
"GET https://www.ebi.ac.uk/proteins/api/mutagenesis"
The UniProt Consortium , UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Research, 2024;, gkae1010, https://doi.org/10.1093/nar/gkae1010
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "UniProt - Mutagenesis":
rba_uniprot_mutagenesis()
#search all mutations in COVID19 proteins rba_uniprot_mutagenesis_search(taxid = 2697049)
#search all mutations in COVID19 proteins rba_uniprot_mutagenesis_search(taxid = 2697049)
Use this function to retrieve a UniProt Entry by it's UniProt accession. You can also use "isoform" or "interaction" arguments to retrieve isoforms or interactor proteins of that entry. Note that in one function call you can only set none or only one of "isoform" or "interaction" as TRUE, not both of them.
rba_uniprot_proteins(accession, interaction = FALSE, isoforms = FALSE, ...)
rba_uniprot_proteins(accession, interaction = FALSE, isoforms = FALSE, ...)
accession |
|
interaction |
Logical: (default = FALSE) Only retrieve interaction information of your supplied UniProt entity? |
isoforms |
Logical: (default = FALSE) Only retrieve isoforms of your supplied UniProt entity? |
... |
rbioapi option(s). See |
A list that contains UniProt protein informations with your supplied accession.
"GET https://ebi.ac.uk/proteins/api/proteins/{accession}"
"GET https://ebi.ac.uk/proteins/api/proteins/interaction/{accession}"
"GET https://ebi.ac.uk/proteins/api/proteins/{accession}/isoforms"
The UniProt Consortium , UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Research, 2024;, gkae1010, https://doi.org/10.1093/nar/gkae1010
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "UniProt - Proteins":
rba_uniprot_proteins_crossref()
,
rba_uniprot_proteins_search()
rba_uniprot_proteins(accession = "P01730") rba_uniprot_proteins(accession = "P01730", interaction = TRUE) rba_uniprot_proteins(accession = "Q29983", isoforms = TRUE)
rba_uniprot_proteins(accession = "P01730") rba_uniprot_proteins(accession = "P01730", interaction = TRUE) rba_uniprot_proteins(accession = "Q29983", isoforms = TRUE)
UniProt Cross-Reference links protein Entities with cross-reference (external) databases. Using this function, you can retrieve a UniProt entity using external database name and protein ID in that database.
rba_uniprot_proteins_crossref( db_id, db_name, reviewed = NULL, isoform = NULL, ... )
rba_uniprot_proteins_crossref( db_id, db_name, reviewed = NULL, isoform = NULL, ... )
db_id |
The protein ID in the cross-reference (external) database. |
db_name |
cross-reference (external database) name. |
reviewed |
Logical: (Optional) If TRUE, only returns "UniProtKB/Swiss-Prot" (reviewed) entries; If FALSE, only returns TrEMBL (un-reviewed) entries. |
isoform |
Numeric: (Optional) you have two options:
see: Alternative products |
... |
rbioapi option(s). See |
List which each element is a UniProt entity that correspond to your supplied cross-reference database name and ID.
"GET https://www.ebi.ac.uk/proteins/api/proteins/{dbtype}:{dbid}"
The UniProt Consortium , UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Research, 2024;, gkae1010, https://doi.org/10.1093/nar/gkae1010
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "UniProt - Proteins":
rba_uniprot_proteins()
,
rba_uniprot_proteins_search()
rba_uniprot_proteins_crossref("cd40", "hgnc") rba_uniprot_proteins_crossref("cd40", "hgnc", reviewed = TRUE) rba_uniprot_proteins_crossref("mica", "hgnc", isoform = 0)
rba_uniprot_proteins_crossref("cd40", "hgnc") rba_uniprot_proteins_crossref("cd40", "hgnc", reviewed = TRUE) rba_uniprot_proteins_crossref("mica", "hgnc", isoform = 0)
Using this function, you can search and retrieve UniProt Knowledge-base (UniProtKB) protein entries using variety of options. You may also refine your search with modifiers such as sequence length, review status etc. See "Arguments" section" for more information.
rba_uniprot_proteins_search( accession = NULL, reviewed = NULL, isoform = NULL, go_term = NULL, keyword = NULL, ec = NULL, gene = NULL, exact_gene = NULL, protein = NULL, organism = NULL, taxid = NULL, pubmed = NULL, seq_length = NULL, md5 = NULL, ... )
rba_uniprot_proteins_search( accession = NULL, reviewed = NULL, isoform = NULL, go_term = NULL, keyword = NULL, ec = NULL, gene = NULL, exact_gene = NULL, protein = NULL, organism = NULL, taxid = NULL, pubmed = NULL, seq_length = NULL, md5 = NULL, ... )
accession |
UniProtKB primary or secondary accession(s). You can supply up to 100 accession numbers. |
reviewed |
Logical: If TRUE, only return "UniProtKB/Swiss-Prot" (reviewed) entries; If FALSE, only return TrEMBL (un-reviewed) entries. |
isoform |
Numeric: you have three options:
see: Alternative products |
go_term |
Limit the search to entries associated with your supplied GO (Gene Ontology) term. You can supply Either GO ID or a character string -partially or fully- matching the term. e.g. "GO:0001776" or "leukocyte homeostasis". if You supply "leukocyte", any term containing that word will be included, e.g "leukocyte chemotaxis", "leukocyte activation". |
keyword |
Limit the search to entries that contain your supplied keyword. see: UniProt Keywords |
ec |
EC (Enzyme Commission) number(s). You can supply up to 20 EC numbers. |
gene |
UniProt gene name(s). You can supply up to 20 gene names. e.g. if you supply "CD40", "CD40 ligand" will also be included. |
exact_gene |
UniProt exact gene name(s). You can supply up to 20 exact gene names. e.g. if you supply "CD40", "CD40 ligand" will not be included in the results. |
protein |
|
organism |
|
taxid |
NIH-NCBI Taxon ID. You can supply up to 20 taxon IDs. |
pubmed |
Entries which cite to the article with your supplied PubMed ID. |
seq_length |
An exact sequence length (e.g. 150) or a range of sequence lengths (e.g. "130-158"). |
md5 |
Sequence md5 value. |
... |
rbioapi option(s). See |
Note that this is a search function. Thus, you are not required to fill
every argument; You may use whatever combinations of arguments you see
fit for your query.s
UniProt Entries are grouped in two sections:
Reviewed(Swiss-Prot): Manually annotated records with information extracted from literature and curator-evaluated computational analysis.
Unreviewed (TrEMBL): Computationally analyzed records that await full manual annotation.
A List where each element corresponds to one UniProt entity returned by your search query. The element itself is a sub-list containing all information that UniProt has about that entity.
"GET https://www.ebi.ac.uk/proteins/api/proteins"
The UniProt Consortium , UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Research, 2024;, gkae1010, https://doi.org/10.1093/nar/gkae1010
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "UniProt - Proteins":
rba_uniprot_proteins()
,
rba_uniprot_proteins_crossref()
rba_uniprot_proteins_search(accession = "Q99616") rba_uniprot_proteins_search(gene = "cd40") rba_uniprot_proteins_search(gene = "cd40 ligand") rba_uniprot_proteins_search(gene = "cd40", reviewed = TRUE) rba_uniprot_proteins_search(gene = "cd40", reviewed = TRUE, isoform = 1) rba_uniprot_proteins_search(keyword = "Inhibition of host chemokines by virus") rba_uniprot_proteins_search(keyword = "chemokines")
rba_uniprot_proteins_search(accession = "Q99616") rba_uniprot_proteins_search(gene = "cd40") rba_uniprot_proteins_search(gene = "cd40 ligand") rba_uniprot_proteins_search(gene = "cd40", reviewed = TRUE) rba_uniprot_proteins_search(gene = "cd40", reviewed = TRUE, isoform = 1) rba_uniprot_proteins_search(keyword = "Inhibition of host chemokines by virus") rba_uniprot_proteins_search(keyword = "chemokines")
UniProt collects and annotates proteomes(Protein sets expressed in an organism). Using this function you can search UniProt for available proteomes. see What are proteomes? for more information.
rba_uniprot_proteomes(upid, get_proteins = FALSE, reviewed = NULL, ...)
rba_uniprot_proteomes(upid, get_proteins = FALSE, reviewed = NULL, ...)
upid |
UniProt Proteome identifier (UPID). You can supply up to 100 UPIDs. |
get_proteins |
logical: set FALSE (default) to only return information of the proteome with supplied UPID, set TRUE to also return the proteins of the supplied proteome UPID. |
reviewed |
Logical: Only considered when get_proteins is TRUE. If TRUE, only return "UniProtKB/Swiss-Prot" (reviewed) proteins; If FALSE, only return TrEMBL (un-reviewed) entries. leave it as NULL if you do not want to filter proteins based on their review status. |
... |
rbioapi option(s). See |
a list containing information of the proteome with your supplied UPID that can contain the proteomes protein entries based on the value of get_proteins argument.
"GET https://ebi.ac.uk/proteins/api/proteomes/proteins/{upid}"
"GET https://ebi.ac.uk/proteins/api/proteomes/{upid}"
The UniProt Consortium , UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Research, 2024;, gkae1010, https://doi.org/10.1093/nar/gkae1010
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "UniProt - Proteomes":
rba_uniprot_genecentric()
,
rba_uniprot_genecentric_search()
,
rba_uniprot_proteomes_search()
rba_uniprot_proteomes(upid = "UP000000354") rba_uniprot_proteomes(upid = "UP000000354", get_proteins = TRUE)
rba_uniprot_proteomes(upid = "UP000000354") rba_uniprot_proteomes(upid = "UP000000354", get_proteins = TRUE)
UniProt collects and annotates proteomes (Protein sets expressed in an organism). Using this function you can search UniProt for available proteomes. see What are proteomes? for more information. You may also refine your search with modifiers such as keyword, taxon id etc. See "Arguments section" for more information.
rba_uniprot_proteomes_search( name = NULL, upid = NULL, taxid = NULL, keyword = NULL, xref = NULL, genome_acc = NULL, is_ref_proteome = NULL, is_redundant = NULL, ... )
rba_uniprot_proteomes_search( name = NULL, upid = NULL, taxid = NULL, keyword = NULL, xref = NULL, genome_acc = NULL, is_ref_proteome = NULL, is_redundant = NULL, ... )
name |
a keyword in proteome's name |
upid |
UniProt Proteome identifier (UPID). You can supply up to 100 UPIDs. |
taxid |
NIH-NCBI Taxon ID. You can supply up to 20 taxon IDs. |
keyword |
Limit the search to entries that contain your supplied keyword. see: UniProt Keywords |
xref |
Proteome cross-references such as Genome assembly ID or Biosample ID. You can supply up to 20 cross-reference IDs. |
genome_acc |
Genome accession associated with the proteome's components. |
is_ref_proteome |
(logical) If TRUE, only return reference proteomes; If FALSE, only returns non-reference proteomes; If NULL (default), the results will not be filtered by this criteria see 'What are reference proteomes?' for more information. |
is_redundant |
(logical) If TRUE, only return redundant proteomes; If FALSE, only returns non-redundant proteomes; If NULL (default), the results will not be filtered by redundancy. see 'Reducing proteome redundancy' for more information. |
... |
rbioapi option(s). See |
Note that this is a search function. Thus, you are not required to fill every argument; You may use whatever combinations of arguments you see fit for your query.
A list where each element is a list that corresponds to a single proteome (search hit) and contains informations pertinent to that proteome.
"GET https://ebi.ac.uk/proteins/api/proteomes"
The UniProt Consortium , UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Research, 2024;, gkae1010, https://doi.org/10.1093/nar/gkae1010
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "UniProt - Proteomes":
rba_uniprot_genecentric()
,
rba_uniprot_genecentric_search()
,
rba_uniprot_proteomes()
rba_uniprot_proteomes_search(name = "SARS-CoV") rba_uniprot_proteomes_search(name = "SARS-CoV", is_ref_proteome = TRUE) rba_uniprot_proteomes_search(name = "SARS-CoV", is_ref_proteome = TRUE) rba_uniprot_proteomes_search(genome_acc = "AY274119")
rba_uniprot_proteomes_search(name = "SARS-CoV") rba_uniprot_proteomes_search(name = "SARS-CoV", is_ref_proteome = TRUE) rba_uniprot_proteomes_search(name = "SARS-CoV", is_ref_proteome = TRUE) rba_uniprot_proteomes_search(genome_acc = "AY274119")
This function is Deprecated. Please use
rba_uniprot_proteomics_non_ptm
instead.
UniProt maps proteomics peptides from different sources to the proteins'
sequences. Using this function, you can retrieve all the proteomics
peptides features that has been map to a given UniProt protein's sequence.
rba_uniprot_proteomics(accession, ...)
rba_uniprot_proteomics(accession, ...)
accession |
|
... |
rbioapi option(s). See |
A list containing the proteomics peptides features of your supplied UniProt protein's sequence.
"GET https://www.ebi.ac.uk/proteins/api/proteomics/{accession}"
The UniProt Consortium, UniProt: the universal protein knowledgebase in 2021, Nucleic Acids Research, Volume 49, Issue D1, 8 January 2021, Pages D480–D489, https://doi.org/10.1093/nar/gkaa1100
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "Deprecated functions":
rba_uniprot_proteomics_search()
,
rba_uniprot_ptm()
,
rba_uniprot_ptm_search()
## Not run: #Deprecated rba_uniprot_proteomics(accession = "P25942") ## End(Not run)
## Not run: #Deprecated rba_uniprot_proteomics(accession = "P25942") ## End(Not run)
UniProt maps post-translational modification proteomics data from different sources to the proteins' sequences. Using this function, you can retrieve all the HPP (Human Proteome Project) proteomics features that has been map to a given UniProt protein's sequence.
rba_uniprot_proteomics_hpp(accession, ...)
rba_uniprot_proteomics_hpp(accession, ...)
accession |
|
... |
rbioapi option(s). See |
UniProt categorizes proteomics data sources into three main data categories: PTM (Post-Translational Modification), non-PTM, and HPP (Human Proteome Project); each with corresponding API endpoints, and thus, rbioapi functions.
A list containing the proteomics data features of your supplied UniProt protein's sequence.
"GET https://www.ebi.ac.uk/proteins/api/proteomics/nonPtm/{accession}"
The UniProt Consortium , UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Research, 2024;, gkae1010, https://doi.org/10.1093/nar/gkae1010
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "UniProt - Proteomics":
rba_uniprot_proteomics_hpp_search()
,
rba_uniprot_proteomics_non_ptm()
,
rba_uniprot_proteomics_non_ptm_search()
,
rba_uniprot_proteomics_ptm()
,
rba_uniprot_proteomics_ptm_search()
,
rba_uniprot_proteomics_species()
rba_uniprot_proteomics_hpp(accession = "P04234")
rba_uniprot_proteomics_hpp(accession = "P04234")
Using this function, you can search for HPP (Human Proteome Project) proteomics features that has been map to UniProt proteins. You may also refine your search with modifiers such as data_source, peptide etc. See "Arguments section" for more information.
rba_uniprot_proteomics_hpp_search( accession = NULL, taxid = NULL, data_source = NULL, upid = NULL, peptide = NULL, unique = NULL, ... )
rba_uniprot_proteomics_hpp_search( accession = NULL, taxid = NULL, data_source = NULL, upid = NULL, peptide = NULL, unique = NULL, ... )
accession |
UniProtKB primary or secondary accession(s). You can supply up to 100 accession numbers. |
taxid |
NIH-NCBI Taxon ID. You can supply up to 20 taxon IDs. |
data_source |
Proteomics data source. In addition to manual curation, UniProt also import PTM annotations from the following databases: Please use 'rba_uniprot_proteomics_species()' for more information on the available data sources for a given species. |
upid |
UniProt Proteome identifier (UPID). You can supply up to 100 UPIDs. |
peptide |
Peptide sequence(s). You can supply up to 20 sequences. |
unique |
Logical: Should the results be filtered based on the Peptide's uniqueness (the fact that a peptide maps to only 1 protein). If TRUE, Only unique peptides will be returned, if FALSE only un-unique peptides will be returned; If NULL (default) the results will not be filtered based on this. |
... |
rbioapi option(s). See |
Note that this is a search function. Thus, you are not required to fill every argument; You may use whatever combinations of arguments you see fit for your query.
UniProt categorizes proteomics data sources into three main data categories: PTM (Post-Translational Modification), non-PTM, and HPP (Human Proteome Project); each with corresponding API endpoints, and thus, rbioapi functions.
A list Where each element correspond to a UniProt protein and proteomics data are organized under the "features" sub-list.
"GET https://www.ebi.ac.uk/proteins/api/proteomics/ptm"
The UniProt Consortium , UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Research, 2024;, gkae1010, https://doi.org/10.1093/nar/gkae1010
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "UniProt - Proteomics":
rba_uniprot_proteomics_hpp()
,
rba_uniprot_proteomics_non_ptm()
,
rba_uniprot_proteomics_non_ptm_search()
,
rba_uniprot_proteomics_ptm()
,
rba_uniprot_proteomics_ptm_search()
,
rba_uniprot_proteomics_species()
rba_uniprot_proteomics_hpp_search(peptide = "NDQVYQPLRDRDDAQYSHLGGNWAR")
rba_uniprot_proteomics_hpp_search(peptide = "NDQVYQPLRDRDDAQYSHLGGNWAR")
UniProt maps proteomics data from different sources to the proteins' sequences. Using this function, you can retrieve all the non-post-translational modification proteomics features that has been map to a given UniProt protein's sequence.
rba_uniprot_proteomics_non_ptm(accession, ...)
rba_uniprot_proteomics_non_ptm(accession, ...)
accession |
|
... |
rbioapi option(s). See |
UniProt categorizes proteomics data sources into three main data categories: PTM (Post-Translational Modification), non-PTM, and HPP (Human Proteome Project); each with corresponding API endpoints, and thus, rbioapi functions.
A list containing the proteomics data features of your supplied UniProt protein's sequence.
"GET https://www.ebi.ac.uk/proteins/api/proteomics/nonPtm/{accession}"
The UniProt Consortium , UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Research, 2024;, gkae1010, https://doi.org/10.1093/nar/gkae1010
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "UniProt - Proteomics":
rba_uniprot_proteomics_hpp()
,
rba_uniprot_proteomics_hpp_search()
,
rba_uniprot_proteomics_non_ptm_search()
,
rba_uniprot_proteomics_ptm()
,
rba_uniprot_proteomics_ptm_search()
,
rba_uniprot_proteomics_species()
rba_uniprot_proteomics_non_ptm(accession = "P04234")
rba_uniprot_proteomics_non_ptm(accession = "P04234")
Using this function, you can search for non-Post-Translational Modification proteomics features that has been map to UniProt proteins. You may also refine your search with modifiers such as data_source, peptide etc. See "Arguments section" for more information.
rba_uniprot_proteomics_non_ptm_search( accession = NULL, taxid = NULL, data_source = NULL, upid = NULL, peptide = NULL, unique = NULL, ... )
rba_uniprot_proteomics_non_ptm_search( accession = NULL, taxid = NULL, data_source = NULL, upid = NULL, peptide = NULL, unique = NULL, ... )
accession |
UniProtKB primary or secondary accession(s). You can supply up to 100 accession numbers. |
taxid |
NIH-NCBI Taxon ID. You can supply up to 20 taxon IDs. |
data_source |
Proteomics data source. In addition to manual curation, UniProt also import PTM annotations from the following databases:
Please use 'rba_uniprot_proteomics_species()' for more information on the available data sources for a given species. |
upid |
UniProt Proteome identifier (UPID). You can supply up to 100 UPIDs. |
peptide |
Peptide sequence(s). You can supply up to 20 sequences. |
unique |
Logical: Should the results be filtered based on the Peptide's uniqueness (the fact that a peptide maps to only 1 protein). If TRUE, Only unique peptides will be returned, if FALSE only un-unique peptides will be returned; If NULL (default) the results will not be filtered based on this. |
... |
rbioapi option(s). See |
Note that this is a search function. Thus, you are not required to fill every argument; You may use whatever combinations of arguments you see fit for your query.
UniProt categorizes proteomics data sources into three main data categories: PTM (Post-Translational Modification), non-PTM, and HPP (Human Proteome Project); each with corresponding API endpoints, and thus, rbioapi functions.
A list Where each element correspond to a UniProt protein and proteomics data are organized under the "features" sub-list.
"GET https://www.ebi.ac.uk/proteins/api/proteomics/nonPtm"
The UniProt Consortium , UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Research, 2024;, gkae1010, https://doi.org/10.1093/nar/gkae1010
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "UniProt - Proteomics":
rba_uniprot_proteomics_hpp()
,
rba_uniprot_proteomics_hpp_search()
,
rba_uniprot_proteomics_non_ptm()
,
rba_uniprot_proteomics_ptm()
,
rba_uniprot_proteomics_ptm_search()
,
rba_uniprot_proteomics_species()
rba_uniprot_proteomics_non_ptm_search(peptide = "NDQVYQPLRDRDDAQYSHLGGNWAR")
rba_uniprot_proteomics_non_ptm_search(peptide = "NDQVYQPLRDRDDAQYSHLGGNWAR")
UniProt maps post-translational modification proteomics data from different sources to the proteins' sequences. Using this function, you can retrieve all the post-translational modification features that has been map to a given UniProt protein's sequence.
rba_uniprot_proteomics_ptm(accession, confidence_score = NULL, ...)
rba_uniprot_proteomics_ptm(accession, confidence_score = NULL, ...)
accession |
|
confidence_score |
(Character) Valid values: "Bronze", "Silver", or
"gold". |
... |
rbioapi option(s). See |
see also: PTM / Processing section in UniProtKB
UniProt categorizes proteomics data sources into three main data categories: PTM (Post-Translational Modification), non-PTM, and HPP (Human Proteome Project); each with corresponding API endpoints, and thus, rbioapi functions.
A list containing the post-translational modification features of your supplied UniProt protein's sequence.
"GET https://www.ebi.ac.uk/proteins/api/proteomics/ptm/{accession}"
The UniProt Consortium , UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Research, 2024;, gkae1010, https://doi.org/10.1093/nar/gkae1010
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "UniProt - Proteomics":
rba_uniprot_proteomics_hpp()
,
rba_uniprot_proteomics_hpp_search()
,
rba_uniprot_proteomics_non_ptm()
,
rba_uniprot_proteomics_non_ptm_search()
,
rba_uniprot_proteomics_ptm_search()
,
rba_uniprot_proteomics_species()
rba_uniprot_proteomics_ptm(accession = "P04234")
rba_uniprot_proteomics_ptm(accession = "P04234")
Using this function, you can search for Post-Translational Modification proteomics features that has been map to UniProt proteins. You may also refine your search with modifiers such as data_source, peptide etc. See "Arguments section" for more information.
rba_uniprot_proteomics_ptm_search( accession = NULL, ptm = NULL, taxid = NULL, data_source = NULL, upid = NULL, peptide = NULL, unique = NULL, confidence_score = NULL, ... )
rba_uniprot_proteomics_ptm_search( accession = NULL, ptm = NULL, taxid = NULL, data_source = NULL, upid = NULL, peptide = NULL, unique = NULL, confidence_score = NULL, ... )
accession |
UniProtKB primary or secondary accession(s). You can supply up to 100 accession numbers. |
ptm |
Post-translational modification name. Valid values are: "Acetylation ", "ADP-ribosylation ", "Amidation ", "Autocatalytic cleavage ", "Bromination ", "Citrullination ", "Cleavage on pair of basic residues ", "Covalent protein-DNA linkage ", "Covalent protein-RNA linkage ", "CTQ ", "D-amino acid ", "Disulfide bond ", "Formylation ", "Gamma-carboxyglutamic acid ", "Glutathionylation ", "Glycoprotein ", "Lipoprotein ", "Hydroxylation ", "Hypusine ", "Iodination ", "Isopeptide bond ", "LTQ ", "Methylation ", "Nitration ", "Organic radical ", "Oxidation ", "Peptidoglycan-anchor ", "Phosphopantetheine ", "Phosphoprotein ", "Pyrrolidone carboxylic acid ", "Quinone ", "S-nitrosylation ", "Sulfation ", "Thioester bond ", "Thioether bond ", "TPQ ", "TTQ ", "Ubl conjugation ", or "Zymogen". |
taxid |
NIH-NCBI Taxon ID. You can supply up to 20 taxon IDs. |
data_source |
Proteomics data source. In addition to manual curation, UniProt also import PTM annotations from the following databases: Please use 'rba_uniprot_proteomics_species()' for more information on the available data sources for a given species. |
upid |
UniProt Proteome identifier (UPID). You can supply up to 100 UPIDs. |
peptide |
Peptide sequence(s). You can supply up to 20 sequences. |
unique |
Logical: Should the results be filtered based on the Peptide's uniqueness (the fact that a peptide maps to only 1 protein). If TRUE, Only unique peptides will be returned, if FALSE only un-unique peptides will be returned; If NULL (default) the results will not be filtered based on this. |
confidence_score |
(Character) Valid values: "Bronze", "Silver", or
"gold". |
... |
rbioapi option(s). See |
Note that this is a search function. Thus, you are not required to fill every argument; You may use whatever combinations of arguments you see fit for your query.
see also: PTM / Processing section in UniProtKB
UniProt categorizes proteomics data sources into three main data categories: PTM (Post-Translational Modification), non-PTM, and HPP (Human Proteome Project); each with corresponding API endpoints, and thus, rbioapi functions.
A list Where each element correspond to a UniProt protein and post-translational modification are organized under the "features" sub-list.
"GET https://www.ebi.ac.uk/proteins/api//proteomics/ptm"
The UniProt Consortium , UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Research, 2024;, gkae1010, https://doi.org/10.1093/nar/gkae1010
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "UniProt - Proteomics":
rba_uniprot_proteomics_hpp()
,
rba_uniprot_proteomics_hpp_search()
,
rba_uniprot_proteomics_non_ptm()
,
rba_uniprot_proteomics_non_ptm_search()
,
rba_uniprot_proteomics_ptm()
,
rba_uniprot_proteomics_species()
rba_uniprot_proteomics_ptm_search(peptide = "NDQVYQPLRDRDDAQYSHLGGNWAR")
rba_uniprot_proteomics_ptm_search(peptide = "NDQVYQPLRDRDDAQYSHLGGNWAR")
This function is Deprecated. Please use
rba_uniprot_proteomics_non_ptm_search
instead.
UniProt maps proteomics peptides from different sources to the proteins'
sequences. Using this function, you can search for proteomics
peptides that has been map to UniProt proteins. You may also refine your
search with modifiers such as data_source, peptide etc. See
"Arguments section" for more information.
rba_uniprot_proteomics_search( accession = NULL, data_source = NULL, taxid = NULL, upid = NULL, peptide = NULL, unique = NULL, ... )
rba_uniprot_proteomics_search( accession = NULL, data_source = NULL, taxid = NULL, upid = NULL, peptide = NULL, unique = NULL, ... )
accession |
UniProtKB primary or secondary accession(s). You can supply up to 100 accession numbers. |
data_source |
Proteomics data source. You can choose up to two of: |
taxid |
NIH-NCBI Taxon ID. You can supply up to 20 taxon IDs. |
upid |
UniProt Proteome identifier (UPID). You can supply up to 100 UPIDs. |
peptide |
Peptide sequence(s). You can supply up to 20 sequences. |
unique |
Logical: Should the results be filtered based on the Peptide's uniqueness (the fact that a peptide maps to only 1 protein). If TRUE, Only unique peptides will be returned, if FALSE only un-unique peptides will be returned; If NULL (default) the results will not be filtered based on this. |
... |
rbioapi option(s). See |
Note that this is a search function. Thus, you are not required to fill
every argument; You may use whatever combinations of arguments you see
fit for your query.
see also: Mass
spectrometry-based proteomics data in UniProtKB
A list Where each element correspond to a UniProt protein and proteomics peptides are organized under the "features" sub-list.
"GET https://www.ebi.ac.uk/proteins/api/proteomics"
The UniProt Consortium, UniProt: the universal protein knowledgebase in 2021, Nucleic Acids Research, Volume 49, Issue D1, 8 January 2021, Pages D480–D489, https://doi.org/10.1093/nar/gkaa1100
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "Deprecated functions":
rba_uniprot_proteomics()
,
rba_uniprot_ptm()
,
rba_uniprot_ptm_search()
## Not run: #Deprecated rba_uniprot_proteomics_search(peptide = "MEDYTKIEK") ## End(Not run) ## Not run: #Deprecated rba_uniprot_proteomics_search(peptide = "MEDYTKIEK") ## End(Not run) ## Not run: #Deprecated ### this will generate a very large response! rba_uniprot_proteomics_search(taxid = 9606, data_source = "PeptideAtlas", progress = TRUE, timeout = 999999, unique = TRUE) ## End(Not run)
## Not run: #Deprecated rba_uniprot_proteomics_search(peptide = "MEDYTKIEK") ## End(Not run) ## Not run: #Deprecated rba_uniprot_proteomics_search(peptide = "MEDYTKIEK") ## End(Not run) ## Not run: #Deprecated ### this will generate a very large response! rba_uniprot_proteomics_search(taxid = 9606, data_source = "PeptideAtlas", progress = TRUE, timeout = 999999, unique = TRUE) ## End(Not run)
Retrieve information on the available Species proteomics data sources in UniProt.
rba_uniprot_proteomics_species(...)
rba_uniprot_proteomics_species(...)
... |
rbioapi option(s). See |
UniProt categorizes proteomics data sources into three main data categories: PTM (Post-Translational Modification), non-PTM, and HPP (Human Proteome Project); each with corresponding API endpoints, and thus, rbioapi functions.
A data frame with the available species as rows, and the columns indicating the proteomics data sources, separated by three main data categories: PTM (Post-Translational Modification), non-PTM, and HPP (Human Proteome Project)
"GET https://www.ebi.ac.uk/proteins/api/proteomics/species"
The UniProt Consortium , UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Research, 2024;, gkae1010, https://doi.org/10.1093/nar/gkae1010
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "UniProt - Proteomics":
rba_uniprot_proteomics_hpp()
,
rba_uniprot_proteomics_hpp_search()
,
rba_uniprot_proteomics_non_ptm()
,
rba_uniprot_proteomics_non_ptm_search()
,
rba_uniprot_proteomics_ptm()
,
rba_uniprot_proteomics_ptm_search()
rba_uniprot_proteomics_species()
rba_uniprot_proteomics_species()
This function is Deprecated. Please use
rba_uniprot_proteomics_ptm
instead.
UniProt maps post-translational modification features from different sources
to the proteins' sequences. Using this function, you can retrieve all
the post-translational modification features that has been map to a given
UniProt protein's sequence.
rba_uniprot_ptm(accession, ...)
rba_uniprot_ptm(accession, ...)
accession |
|
... |
rbioapi option(s). See |
see also: PTM / Processing section in UniProtKB
A list containing the post-translational modification features of your supplied UniProt protein's sequence.
"GET https://www.ebi.ac.uk/proteins/api/proteomics-ptm/{accession}"
The UniProt Consortium, UniProt: the universal protein knowledgebase in 2021, Nucleic Acids Research, Volume 49, Issue D1, 8 January 2021, Pages D480–D489, https://doi.org/10.1093/nar/gkaa1100
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "Deprecated functions":
rba_uniprot_proteomics()
,
rba_uniprot_proteomics_search()
,
rba_uniprot_ptm_search()
## Not run: #Deprecated rba_uniprot_ptm(accession = "P04234") ## End(Not run)
## Not run: #Deprecated rba_uniprot_ptm(accession = "P04234") ## End(Not run)
This function is Deprecated. Please use
rba_uniprot_proteomics_ptm_search
instead.
UniProt maps proteomics peptides from different sources to the proteins'
sequences. Using this function, you can search for proteomics
peptides that has been map to UniProt proteins. You may also refine your
search with modifiers such as data_source, peptide etc. See
"Arguments section" for more information.
rba_uniprot_ptm_search( accession = NULL, ptm = NULL, data_source = NULL, taxid = NULL, upid = NULL, peptide = NULL, unique = NULL, ... )
rba_uniprot_ptm_search( accession = NULL, ptm = NULL, data_source = NULL, taxid = NULL, upid = NULL, peptide = NULL, unique = NULL, ... )
accession |
UniProtKB primary or secondary accession(s). You can supply up to 100 accession numbers. |
ptm |
Post-translational modification name |
data_source |
Proteomics data source. You can choose up to two of: |
taxid |
NIH-NCBI Taxon ID. You can supply up to 20 taxon IDs. |
upid |
UniProt Proteome identifier (UPID). You can supply up to 100 UPIDs. |
peptide |
Peptide sequence(s). You can supply up to 20 sequences. |
unique |
Logical: Should the results be filtered based on the Peptide's uniqueness (the fact that a peptide maps to only 1 protein). If TRUE, Only unique peptides will be returned, if FALSE only un-unique peptides will be returned; If NULL (default) the results will not be filtered based on this. |
... |
rbioapi option(s). See |
Note that this is a search function. Thus, you are not required to fill
every argument; You may use whatever combinations of arguments you see
fit for your query.
see also:
PTM /
Processing section in UniProtKB
A list Where each element correspond to a UniProt protein and post-translational modification are organized under the "features" sub-list.
"GET https://www.ebi.ac.uk/proteins/api/proteomics-ptm"
The UniProt Consortium, UniProt: the universal protein knowledgebase in 2021, Nucleic Acids Research, Volume 49, Issue D1, 8 January 2021, Pages D480–D489, https://doi.org/10.1093/nar/gkaa1100
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "Deprecated functions":
rba_uniprot_proteomics()
,
rba_uniprot_proteomics_search()
,
rba_uniprot_ptm()
## Not run: #Deprecated rba_uniprot_ptm_search(peptide = "NDQVYQPLRDRDDAQYSHLGGNWAR") ## End(Not run)
## Not run: #Deprecated rba_uniprot_ptm_search(peptide = "NDQVYQPLRDRDDAQYSHLGGNWAR") ## End(Not run)
Use this function to retrieve RNA-editing events (conversion, insertion, deletion of nucleotides) annotations linked to a UniProt entry.
rba_uniprot_rna_edit(accession, ...)
rba_uniprot_rna_edit(accession, ...)
accession |
|
... |
rbioapi option(s). See |
A list containing the UniProt RNA-editing features details for the given accession.
"GET https://www.ebi.ac.uk/proteins/api/rna-edit/{accession}"
Other "UniProt - Epitopes":
rba_uniprot_epitope()
,
rba_uniprot_epitope_search()
rba_uniprot_rna_edit(accession = "Q16851")
rba_uniprot_rna_edit(accession = "Q16851")
UniProt Curates RNA-editing events (conversion, insertion, deletion of nucleotides). Use this function to search RNA editing records in UniProt using various criteria such as accession, taxon ID, or variant location.
rba_uniprot_rna_edit_search( accession = NULL, taxid = NULL, variantlocation = NULL, ... )
rba_uniprot_rna_edit_search( accession = NULL, taxid = NULL, variantlocation = NULL, ... )
accession |
UniProtKB primary or secondary accession(s). You can supply up to 100 accession numbers. |
taxid |
(Numeric) NIH-NCBI Taxon ID. You can supply up to 20 taxon IDs. |
variantlocation |
Character: RNA editing variant location(s). You can supply up to 20 taxon IDs. |
... |
rbioapi option(s). See |
A List where each element corresponds to one UniProt entity returned by your search query. The element itself is a sub-list containing all information that UniProt has about that entity.
"GET https://www.ebi.ac.uk/proteins/api/rna-editing"
rba_uniprot_rna_edit_search(accession = c("Q16851", "Q16849"))
rba_uniprot_rna_edit_search(accession = c("Q16851", "Q16849"))
Using this function, you can retrieve taxonomic nodes information by providing their NCBI taxonomic identifiers. also, you can explicitly retrieve other nodes in relation to your supplied node's hierarchy in UniProt Taxonomy database.
rba_uniprot_taxonomy( ids, hierarchy = NULL, node_only = TRUE, page_size = 200, page_number = 1, ... )
rba_uniprot_taxonomy( ids, hierarchy = NULL, node_only = TRUE, page_size = 200, page_number = 1, ... )
ids |
(numeric) a single or a numeric vector of NCBI taxonomic identifier(s) |
hierarchy |
Retrieve taxonomic nodes that have specific hierarchical relation to your supplied taxonomic node. should be one of: "children", "parent" or "siblings". |
node_only |
Retrieve only the node(s) information and exclude URL links to parents, siblings and children nodes. |
page_size |
(numeric) Only when hierarchy is supplied. hierarchy information may be very long, thus UniProt API will paginate the results, you may use this argument to control the pagination. maximum value is 200. |
page_number |
(numeric) Only when hierarchy is supplied. hierarchy information may be very long, thus UniProt API will paginate the results, you may use this argument to control the pagination. |
... |
rbioapi option(s). See |
a list containing your supplied nodes or their related nodes taxonomic information.
"GET https://ebi.ac.uk/proteins/api/ids/{ids}"
"GET https://ebi.ac.uk/proteins/api/ids/id/{id}/node"
"GET https://ebi.ac.uk/proteins/api/id/{id}/node"
"GET https://ebi.ac.uk/proteins/api/id/{id}/children"
"GET https://ebi.ac.uk/proteins/api/id/{id}/children/node"
"GET https://ebi.ac.uk/proteins/api/id/{id}/parent"
"GET https://ebi.ac.uk/proteins/api/id/{id}/parent/node"
"GET https://ebi.ac.uk/proteins/api/id/{id}/siblings"
"GET https://ebi.ac.uk/proteins/api/id/{id}/siblings/node"
The UniProt Consortium , UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Research, 2024;, gkae1010, https://doi.org/10.1093/nar/gkae1010
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "UniProt - Taxonomy":
rba_uniprot_taxonomy_lca()
,
rba_uniprot_taxonomy_lineage()
,
rba_uniprot_taxonomy_name()
,
rba_uniprot_taxonomy_path()
,
rba_uniprot_taxonomy_relationship()
rba_uniprot_taxonomy(ids = c(9606, 10090)) rba_uniprot_taxonomy(ids = 9989, hierarchy = "children")
rba_uniprot_taxonomy(ids = c(9606, 10090)) rba_uniprot_taxonomy(ids = 9989, hierarchy = "children")
Use this function to retrieve lowest common ancestor (LCA) of two taxonomy nodes in UniProt Taxonomy database
rba_uniprot_taxonomy_lca(ids, ...)
rba_uniprot_taxonomy_lca(ids, ...)
ids |
(numeric) Numeric vector of NCBI taxonomic identifiers, with minimum length of two. |
... |
rbioapi option(s). See |
A list with UniProt taxonomy information of your supplied taxonomy elements.
"GET https://ebi.ac.uk/proteins/api/ancestor/{ids}"
The UniProt Consortium , UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Research, 2024;, gkae1010, https://doi.org/10.1093/nar/gkae1010
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "UniProt - Taxonomy":
rba_uniprot_taxonomy()
,
rba_uniprot_taxonomy_lineage()
,
rba_uniprot_taxonomy_name()
,
rba_uniprot_taxonomy_path()
,
rba_uniprot_taxonomy_relationship()
rba_uniprot_taxonomy_lca(c(9606,10090,9823,7712))
rba_uniprot_taxonomy_lca(c(9606,10090,9823,7712))
Use this function to retrieve the taxonomic lineage of your supplied taxonomy node.
rba_uniprot_taxonomy_lineage(id, ...)
rba_uniprot_taxonomy_lineage(id, ...)
id |
(numeric) a NCBI taxonomic identifier |
... |
rbioapi option(s). See |
A list with a data frame containing All the nodes that preceded your supplied node in the taxonomic tree. with your node as the first row and the root node in the last row.
"GET https://ebi.ac.uk/proteins/api/lineage/{id}"
The UniProt Consortium , UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Research, 2024;, gkae1010, https://doi.org/10.1093/nar/gkae1010
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "UniProt - Taxonomy":
rba_uniprot_taxonomy()
,
rba_uniprot_taxonomy_lca()
,
rba_uniprot_taxonomy_name()
,
rba_uniprot_taxonomy_path()
,
rba_uniprot_taxonomy_relationship()
rba_uniprot_taxonomy_lineage(id = 9989)
rba_uniprot_taxonomy_lineage(id = 9989)
Using this function, you can search and retrieve taxonomic nodes using their names from UniProt Taxonomy database.
rba_uniprot_taxonomy_name( name, field = "scientific", search_type = "equal_to", node_only = TRUE, page_size = 200, page_number = 1, ... )
rba_uniprot_taxonomy_name( name, field = "scientific", search_type = "equal_to", node_only = TRUE, page_size = 200, page_number = 1, ... )
name |
a name to to be used as search query. |
field |
Specify the field that your supplied name should be searched. It should be one of : "scientific" (default), "common" or "mnemonic". |
search_type |
The logical relationship between your supplied search query and the taxonomic name field. It should be one of "equal_to" (default), "start_with", "end_with" or "contain". |
node_only |
(logical) Retrieve only the node(s) information and exclude URL links to parents, siblings and children nodes. default = TRUE |
page_size |
(numeric) Your search results may be very long, thus UniProt API will paginate the results, you may use this argument to control the pagination. maximum value is 200. |
page_number |
(numeric) Your search results may be very long, thus UniProt API will paginate the results, you may use this argument to control the pagination. maximum value is 200. |
... |
rbioapi option(s). See |
a list containing taxonomic nodes that match your supplied inputs.
"GET https://ebi.ac.uk/proteins/api/name/{name}"
"GET https://ebi.ac.uk/proteins/api/name/{name}/node"
The UniProt Consortium , UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Research, 2024;, gkae1010, https://doi.org/10.1093/nar/gkae1010
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "UniProt - Taxonomy":
rba_uniprot_taxonomy()
,
rba_uniprot_taxonomy_lca()
,
rba_uniprot_taxonomy_lineage()
,
rba_uniprot_taxonomy_path()
,
rba_uniprot_taxonomy_relationship()
rba_uniprot_taxonomy_name(name = "homo", field = "scientific", search_type = "start_with") rba_uniprot_taxonomy_name(name = "adenovirus", field = "scientific", search_type = "contain", page_size = 200, page_number = 2)
rba_uniprot_taxonomy_name(name = "homo", field = "scientific", search_type = "start_with") rba_uniprot_taxonomy_name(name = "adenovirus", field = "scientific", search_type = "contain", page_size = 200, page_number = 2)
Using this function you can retrieve nodes that are located in the top or the bottom of your supplied node in UniProt Taxonomy database tree
rba_uniprot_taxonomy_path(id, direction, depth = 5, ...)
rba_uniprot_taxonomy_path(id, direction, depth = 5, ...)
id |
(numeric) a NCBI taxonomic identifier |
direction |
direction of the taxonomic path, either "TOP" or "BOTTOM". |
depth |
(numeric) How many levels should be traversed on the taxonomic tree? (from 1 to 5, default = 5) |
... |
rbioapi option(s). See |
a nested list containing the node which are in the path specified by your supplied argument in the UniProt taxonomic tree.
"GET https://ebi.ac.uk/proteins/api/path"
The UniProt Consortium , UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Research, 2024;, gkae1010, https://doi.org/10.1093/nar/gkae1010
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "UniProt - Taxonomy":
rba_uniprot_taxonomy()
,
rba_uniprot_taxonomy_lca()
,
rba_uniprot_taxonomy_lineage()
,
rba_uniprot_taxonomy_name()
,
rba_uniprot_taxonomy_relationship()
rba_uniprot_taxonomy_path(id = 9606, direction = "TOP", depth = 3) rba_uniprot_taxonomy_path(id = 207598, direction = "BOTTOM", depth = 3)
rba_uniprot_taxonomy_path(id = 9606, direction = "TOP", depth = 3) rba_uniprot_taxonomy_path(id = 207598, direction = "BOTTOM", depth = 3)
Use this function to retrieve the shortest path between two nodes in the taxonomy tree of UniProt Taxonomy database.
rba_uniprot_taxonomy_relationship(from, to, ...)
rba_uniprot_taxonomy_relationship(from, to, ...)
from |
NCBI taxonomic identifier of your initial node. |
to |
NCBI taxonomic identifier of your final node. |
... |
rbioapi option(s). See |
a nested list containing the node which are in the shortest path between your supplied nodes.
"GET https://ebi.ac.uk/proteins/api/relationship"
The UniProt Consortium , UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Research, 2024;, gkae1010, https://doi.org/10.1093/nar/gkae1010
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "UniProt - Taxonomy":
rba_uniprot_taxonomy()
,
rba_uniprot_taxonomy_lca()
,
rba_uniprot_taxonomy_lineage()
,
rba_uniprot_taxonomy_name()
,
rba_uniprot_taxonomy_path()
rba_uniprot_taxonomy_relationship(from = 9606, to = 10090)
rba_uniprot_taxonomy_relationship(from = 9606, to = 10090)
Use this function to retrieve UniParc entries. You can use either -and only one of- UniProt accession, Cross-reference database id, UniParc ID or UniProt Proteome UPID. You can also filter the returned content of the returned UniParc entry. see "Argument" section for more details.
rba_uniprot_uniparc( upi = NULL, accession = NULL, db_id = NULL, upid = NULL, rf_dd_type = NULL, rf_db_id = NULL, rf_active = NULL, rf_tax_id = NULL, ... )
rba_uniprot_uniparc( upi = NULL, accession = NULL, db_id = NULL, upid = NULL, rf_dd_type = NULL, rf_db_id = NULL, rf_active = NULL, rf_tax_id = NULL, ... )
upi |
unique UniParc Identifier. |
accession |
|
db_id |
Protein ID in the cross-reference (external) database. |
upid |
UniProt Proteome identifier (UPID). You can supply up to 100 UPIDs. |
rf_dd_type |
Filter the content of the UniParc entry by cross-reference names. You can supply multiple values. |
rf_db_id |
Filter the content of the UniParc entry by protein identifiers in any cross-reference database. You can supply multiple values. |
rf_active |
(logical ) Filter the content of UniParc entry based on active status on source database:
|
rf_tax_id |
(Numeric) Filter the content of the UniParc entry by NIH-NCBI Taxon ID. You can supply multiple values. |
... |
rbioapi option(s). See |
A list which correspond to a UniParc entry.
"GET https://ebi.ac.uk/proteins/api/uniparc/accession/{accession} "
"GET https://ebi.ac.uk/proteins/api/uniparc/dbreference/{dbid}"
"GET https://ebi.ac.uk/proteins/api/uniparc/proteome/{upid}"
"GET https://ebi.ac.uk/proteins/api/uniparc/upi/{upi}"
The UniProt Consortium , UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Research, 2024;, gkae1010, https://doi.org/10.1093/nar/gkae1010
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "UniProt - UniParc":
rba_uniprot_uniparc_bestguess()
,
rba_uniprot_uniparc_search()
,
rba_uniprot_uniparc_sequence()
rba_uniprot_uniparc(upi = "UPI00000000C9") rba_uniprot_uniparc(upi = "UPI00000000C9") rba_uniprot_uniparc(upi = "UPI00000000C9", rf_active = FALSE)
rba_uniprot_uniparc(upi = "UPI00000000C9") rba_uniprot_uniparc(upi = "UPI00000000C9") rba_uniprot_uniparc(upi = "UPI00000000C9", rf_active = FALSE)
This function returns the UniParc Entry with a cross-reference to the longest active UniProtKB sequence (preferably from Swiss-Prot and if not then TrEMBL). If it finds more than one longest active UniProtKB sequence it returns 400 (Bad Request) error response with the list of cross references found.
rba_uniprot_uniparc_bestguess( upi = NULL, accession = NULL, db_id = NULL, gene = NULL, taxid = NULL, ... )
rba_uniprot_uniparc_bestguess( upi = NULL, accession = NULL, db_id = NULL, gene = NULL, taxid = NULL, ... )
upi |
unique UniParc Identifier. |
accession |
UniProtKB primary or secondary accession(s). You can supply up to 100 accession numbers. |
db_id |
Protein ID in the cross-reference (external) database. You can supply up to 100 IDs. |
gene |
UniProt gene name(s). You can supply up to 20 gene names. |
taxid |
NIH-NCBI Taxon ID. You can supply up to 20 taxon IDs. |
... |
rbioapi option(s). See |
A list where each element correspond to a UniParc entry.
"GET https://ebi.ac.uk/proteins/api/uniparc/bestguess"
The UniProt Consortium , UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Research, 2024;, gkae1010, https://doi.org/10.1093/nar/gkae1010
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "UniProt - UniParc":
rba_uniprot_uniparc()
,
rba_uniprot_uniparc_search()
,
rba_uniprot_uniparc_sequence()
rba_uniprot_uniparc_bestguess("UPI00000000C9")
rba_uniprot_uniparc_bestguess("UPI00000000C9")
Use this function to search UniProt Archive (UniParc) entries.You may also refine your search with modifiers such as sequence length, taxon id etc. See "Arguments section" for more information.
rba_uniprot_uniparc_search( upi = NULL, accession = NULL, db_type = NULL, db_id = NULL, gene = NULL, protein = NULL, taxid = NULL, organism = NULL, sequence_checksum = NULL, ipr = NULL, signature_db = NULL, signature_id = NULL, upid = NULL, seq_length = NULL, rf_dd_type = NULL, rf_db_id = NULL, rf_active = NULL, rf_tax_id = NULL, ... )
rba_uniprot_uniparc_search( upi = NULL, accession = NULL, db_type = NULL, db_id = NULL, gene = NULL, protein = NULL, taxid = NULL, organism = NULL, sequence_checksum = NULL, ipr = NULL, signature_db = NULL, signature_id = NULL, upid = NULL, seq_length = NULL, rf_dd_type = NULL, rf_db_id = NULL, rf_active = NULL, rf_tax_id = NULL, ... )
upi |
unique UniParc Identifier(s). You can supply up to 100 IDs. |
accession |
UniProtKB primary or secondary accession(s). You can supply up to 100 accession numbers. |
db_type |
cross-reference (external database) name. |
db_id |
Protein ID in the cross-reference (external) database. You can supply up to 100 IDs. |
gene |
UniProt gene name(s). You can supply up to 20 gene names. |
protein |
|
taxid |
NIH-NCBI Taxon ID. You can supply up to 20 taxon IDs. |
organism |
|
sequence_checksum |
Sequence CRC64 checksum. |
ipr |
InterPro identifier(s). You can supply up to 20 IDs. |
signature_db |
InterPro's
signature
database. You can supply up to 13 of the following values:
|
signature_id |
Signature ID in the InterPro's signature database. You can supply up to 20 IDs. |
upid |
UniProt Proteome identifier (UPID). You can supply up to 100 UPIDs. |
seq_length |
An exact sequence length (e.g. 150) or a range of sequence lengths (e.g. "130-158"). |
rf_dd_type |
Filter the content of the each UniParc entry by cross-reference names. You can supply multiple values. |
rf_db_id |
Filter the content of the each UniParc entry by protein identifiers in any cross-reference database. You can supply multiple values. |
rf_active |
(logical ) Filter the content of each UniParc entry based on active status on source database:
|
rf_tax_id |
(Numeric) Filter the content of each UniParc entry by NIH-NCBI Taxon ID. You can supply multiple values. |
... |
rbioapi option(s). See |
Note that this is a search function. Thus, you are not required to fill every argument; You may use whatever combinations of arguments you see fit for your query.
A List where each element corresponds to one UniParc entry returned by your search query. The element itself is a sub-list containing sequence information and reference entries.
"GET https://ebi.ac.uk/proteins/api/uniparc"
The UniProt Consortium , UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Research, 2024;, gkae1010, https://doi.org/10.1093/nar/gkae1010
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "UniProt - UniParc":
rba_uniprot_uniparc()
,
rba_uniprot_uniparc_bestguess()
,
rba_uniprot_uniparc_sequence()
rba_uniprot_uniparc_search(upi = "UPI00000000C9") rba_uniprot_uniparc_search(accession = "P30914") rba_uniprot_uniparc_search(accession = "P30914", rf_active = TRUE) rba_uniprot_uniparc_search(taxid = "694009", protein = "Nucleoprotein")
rba_uniprot_uniparc_search(upi = "UPI00000000C9") rba_uniprot_uniparc_search(accession = "P30914") rba_uniprot_uniparc_search(accession = "P30914", rf_active = TRUE) rba_uniprot_uniparc_search(taxid = "694009", protein = "Nucleoprotein")
Retrieve UniParc Entry by providing an exact sequence. Note that partial matches will not be accepted. You can also filter the returned content of the returned UniParc entry. see "Argument" section for more details.
rba_uniprot_uniparc_sequence( sequence, rf_dd_type = NULL, rf_db_id = NULL, rf_active = NULL, rf_tax_id = NULL, ... )
rba_uniprot_uniparc_sequence( sequence, rf_dd_type = NULL, rf_db_id = NULL, rf_active = NULL, rf_tax_id = NULL, ... )
sequence |
Exact UniParc protein sequence. Partial matches will not be accepted. |
rf_dd_type |
Filter the content of the UniParc entry by cross-reference names. You can supply multiple values. |
rf_db_id |
Filter the content of the UniParc entry by protein identifiers in any cross-reference database. You can supply multiple values. |
rf_active |
(logical ) Filter the content of UniParc entry based on active status on source database:
|
rf_tax_id |
(Numeric) Filter the content of the UniParc entry by NIH-NCBI Taxon ID. You can supply multiple values. |
... |
rbioapi option(s). See |
A list which correspond to a UniParc entry.
"POST https://ebi.ac.uk/proteins/api/uniparc/sequence"
The UniProt Consortium , UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Research, 2024;, gkae1010, https://doi.org/10.1093/nar/gkae1010
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "UniProt - UniParc":
rba_uniprot_uniparc()
,
rba_uniprot_uniparc_bestguess()
,
rba_uniprot_uniparc_search()
rba_uniprot_uniparc_sequence("GMRSCPRGCSQRGRCENGRCVCNPGYTGEDC")
rba_uniprot_uniparc_sequence("GMRSCPRGCSQRGRCENGRCVCNPGYTGEDC")
Retrieve natural variant annotations of a sequence using UniProt protein accession, dbSNP or HGVS expression.
rba_uniprot_variation( id, id_type, source_type = NULL, consequence_type = NULL, wild_type = NULL, alternative_sequence = NULL, location = NULL, save_peff = FALSE, ... )
rba_uniprot_variation( id, id_type, source_type = NULL, consequence_type = NULL, wild_type = NULL, alternative_sequence = NULL, location = NULL, save_peff = FALSE, ... )
id |
An ID which can be either a UniProt primary or secondary accession, NIH-NCBI dbSNP ID or HGVS expression. NIH-NCBI dbSNP id or HGVS Expression. |
id_type |
The type of supplied ID argument, one of: "uniprot", "dbsnp" or "hgvs" |
source_type |
Variation's source type. You can choose up to two of: "UniProt", "large scale study" and/or "mixed". |
consequence_type |
Variation's consequence type. You can choose up to two of: "missense", "stop gained" or "stop lost". |
wild_type |
Wild type amino acid. Accepted values are IUPAC single-letter amino acid (e.g. D for Aspartic acid) and "*" for stop codon. You can supply up to 20 values. |
alternative_sequence |
Alternative amino acid. Accepted values are IUPAC single-letter amino acid (e.g. D for Aspartic acid) and "*" for stop codon and "-" for deletion. You can supply up to 20 values. |
location |
A valid amino acid range (e.g. 10-25) within the sequence range where the variation occurs. You can supply up to 20 values. |
save_peff |
Logical or Character:
|
... |
rbioapi option(s). See |
A list where each element is a list that corresponds to a UniProt protein entry.
"GET https://www.ebi.ac.uk/proteins/api/variation/dbsnp/{dbid}"
"GET https://www.ebi.ac.uk/proteins/api/variation/hgvs/{hgvs}"
"GET https://www.ebi.ac.uk/proteins/api/variation/{accession}"
The UniProt Consortium , UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Research, 2024;, gkae1010, https://doi.org/10.1093/nar/gkae1010
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "UniProt - Variation":
rba_uniprot_variation_search()
rba_uniprot_variation(id = "rs121434451", id_type = "dbsnp") rba_uniprot_variation(id = "NC_000008.11:g.22119227C>T", id_type = "hgvs") rba_uniprot_variation(id = "O43593", id_type = "uniprot")
rba_uniprot_variation(id = "rs121434451", id_type = "dbsnp") rba_uniprot_variation(id = "NC_000008.11:g.22119227C>T", id_type = "hgvs") rba_uniprot_variation(id = "O43593", id_type = "uniprot")
Using this function, you can search and retrieve Natural variant(s) that has been annotated in the protein's sequences. You may also refine your search with modifiers such as source type, disease etc. See "Arguments section" for more information.
rba_uniprot_variation_search( accession = NULL, source_type = NULL, consequence_type = NULL, wild_type = NULL, alternative_sequence = NULL, location = NULL, disease = NULL, omim = NULL, evidence = NULL, taxid = NULL, db_type = NULL, db_id = NULL, save_peff = FALSE, ... )
rba_uniprot_variation_search( accession = NULL, source_type = NULL, consequence_type = NULL, wild_type = NULL, alternative_sequence = NULL, location = NULL, disease = NULL, omim = NULL, evidence = NULL, taxid = NULL, db_type = NULL, db_id = NULL, save_peff = FALSE, ... )
accession |
UniProtKB primary or secondary accession(s). You can supply up to 100 accession numbers. |
source_type |
Variation's source type. You can choose up to two of: "UniProt", "large scale study" and/or "mixed". |
consequence_type |
Variation's consequence type. You can choose up to two of: "missense", "stop gained" or "stop lost". |
wild_type |
Wild type amino acid. Accepted values are IUPAC single-letter amino acid (e.g. D for Aspartic acid) and "*" for stop codon. You can supply up to 20 values. |
alternative_sequence |
Alternative amino acid. Accepted values are IUPAC single-letter amino acid (e.g. D for Aspartic acid) and "*" for stop codon and "-" for deletion. You can supply up to 20 values. |
location |
A valid amino acid range (e.g. 10-25) within the sequence range where the variation occurs. You can supply up to 20 values. |
disease |
Human disease that are associated with a sequence variation. Accepted values are disease name (e.g. Alzheimer disease 18), partial disease name (Alzheimer) and/or disease acronym (e.g. AD). You can supply up to 20 values. |
omim |
OMIM ID that is associated with a variation. You can supply up to 20 values. |
evidence |
Pubmed ID of the variation's citation You can supply up to 20 values. |
taxid |
NIH-NCBI Taxon ID. You can supply up to 20 taxon IDs. |
db_type |
cross-reference database of the variation. You can supply up to two of the following:
|
db_id |
The variation ID in a Cross-reference (external) database. You can supply up to 20 values. |
save_peff |
Logical or Character:
|
... |
rbioapi option(s). See |
Note that this is a search function. Thus, you are not required to fill every argument; You may use whatever combinations of arguments you see fit for your query.
List where each element corresponds to one UniProt entity returned by your search query. The element itself is a sub-list containing all information that UniProt has about that Variation.
"GET https://www.ebi.ac.uk/proteins/api/variation"
The UniProt Consortium , UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Research, 2024;, gkae1010, https://doi.org/10.1093/nar/gkae1010
Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, Maria Martin, The Proteins API: accessing key integrated protein and genome information, Nucleic Acids Research, Volume 45, Issue W1, 3 July 2017, Pages W539–W544, https://doi.org/10.1093/nar/gkx237
Other "UniProt - Variation":
rba_uniprot_variation()
rba_uniprot_variation_search(accession = "P05067") rba_uniprot_variation_search(disease = "alzheimer disease, 18") rba_uniprot_variation_search(disease = "alzheimer", wild_type = "A", alternative_sequence = "T")
rba_uniprot_variation_search(accession = "P05067") rba_uniprot_variation_search(disease = "alzheimer disease, 18") rba_uniprot_variation_search(disease = "alzheimer", wild_type = "A", alternative_sequence = "T")